ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

DEFORMATIONS

  Deflections and hog are calculated at midspan only          
           
  Axial shortening and hog at transfer        
           {DEC 2}
    Girder length (Lg)

=

{Lg}

  m {DEC 0}
    Mean Young's Modulus of girder at transfer (Egmt)  

=

  {Egmt}

  MPa
    Mean Young's Modulus of girder at erection (Egmi)  

=

  {Egmi}

  MPa
           
  Elastic axial shortening:        
    Prestressing force at transfer for hog (Ptm)

=

{Ptm}

  kN
    Area of girder (Ag)

=

{Ag}

  mm^2
    Elastic axial shortening (Xe = Pt*Lg*1E6/(Ag*Egmt))  

=

{Xe}

  mm {DEC 1}
           
  Shortening due to shrinkage:        
    Theoretical thickness (th3)

=

{th3}

  {DEC 3}
    Shrinkage coefficient k1 as per Fig 6.1.7 (k1s)

=

{k1s}

  {DEC 1}
    Shrinkage strain at erection (u3 = k1s*850)

=

{u3}

  microstrain
    Shortening due to shrinkage (Xs = u3*Lg/1000)  

=

{Xs}

  mm {DEC 3}
           
  Shortening due to creep:        
    Shrinkage coefficient k2 as per Fig 6.1.8 (k2sc)

=

{k2sc}

   
    Shrinkage coefficient k3 as per Fig 6.1.8 (k3sc)

=

{k3sc}

  {DEC 3}
    Design creep factor Øcc (Øccsc)

=

{Occsc}

  {DEC 1}
    Stress at the CG of strand group (fcscgs)

=

{fcscgs}

   
    Creep strain at erection (u4 = fcscgs*Øccsc*1E6/Egmi)  

=

{u4}

  microstrain
    Shortening due to creep (Xc = u4*Lg/1000)  

=

{Xc}

  mm
           
    Total axial shortening (Xa = Xe + Xs + Xc)

=

{Xa}

  mm
           
  Deflection due to selfweight (Dsw):       {EXP4} 
    Girder moment of inertia (Ig)

=

{Ig}

  mm^4 {DEC 1}
    Moment due to self weight (Mswx)

=

{Mswx}

  kN.m
    Dsw = 40*Mswx*Lg*Lg*1E12/(384*Egmt*Ig)  

=

{Dsw}

  mm
           
  Hog due to prestress:        
    Eccentricity of strand group (e)

=

{e}

  mm
    Hps = - Pt*1000*e*(Lg*1000)^2/(8*Egmt*Ig)  

=

{Hps}

  mm
           
  Nett hog at transfer: (Htr = Dsw + Hps)

=

{Htr}

  mm
           
           
  Deflection due to deck & SDL loads       {DEC 0}
           
  Young's modulus of girder at installation (Egmi)

=

{Egmi}

  MPa {EXP4}
  Composite moment of inertia (Ic)

=

  {Ic}

  mm^4 {DEC 1}
  Moment due to insitu deck (Mslabx)

=

{Mslabx}

  kN.m
  Moment due to hotmix/bitumen (Msdlx)

=

{Msdlx}

  kN.m
           
  Deflection due to insitu deck slab:       {DEC 2}
  Ddeck = 40*Mslabx*Lg*Lg*1000^12/(384*Egmi*Ig)  

=

{Ddeck}

  mm
           
  Deflection due to hotmix/bitumen:

=

     
  Dsdl = 40*Msdlx*Lg*Lg*1000^12/(384*Eg*Ic)  

=

{Dsdl}

  mm
           
  Total DL deflection (Ddl = Ddeck + Dsdl)

=

{Ddl}

  mm
           
  Design Live Load deflection        
           
  Deflection due to design Live Load (Dll)

=

{Dll}

  mm
  Allowable deflection (Dperm = Lg*1000/Drperm)

=

{Dperm}

  mm
  Live Load Deflection Ratio (Dratio = Lg*1000/Dll) 

=

{Dratio}

   
  Allowable Live Load Deflection Ratio (Drperm)  

=

{Drperm}

  Must be < {Dratio} 
           
  Girder hog between transfer & installation       {DEC 0}
           
  Girder hog due to creep of girder between transfer and installation
  Number of days to installation of girder (Ti)

=

{Ti}

  days {DEC 2}
           
  Basic creep factor (Øccb1)

=

{Occb1}

  {DEC 0}
  Exposed perimeter (Per)

=

{Per}

  mm
  Girder concrete strength at installation (f'cmi)

=

{f'cmi}

  MPa
  Area of girder (Ag)

=

{Ag}

  mm^2
  Young's Modulus of girder at installation (Egmi)

=

{Egmi}

  MPa {EXP4}
  Young's Modulus of PS strands (Ep)

=

  {Ep}

  MPa {DEC 0}
  Area of strand steel (Ap)

=

{Ap}

  mm2 {DEC 2}
  Stress at the CG of strand group (fcgs)

=

{fcgs}

  MPa {DEC 1}
           
  Theoretical thickness (th1 = 2*Ag/Per)

=

{th1}

  mm {DEC 2}
           
  Strength Ratio (Fratio3 = f'cmi/f'cg)  

=

{Fratio3}

   
  Creep factor k2c (Fig 6.1.8a)

=

{k2c}

   
  Creep factor k3c (Fig 6.1.8b)

=

{k3c}

   
  Design creep factor (Øcc1 = Øccb1*k2*k3)

=

{Occ1}

  {DEC 1} 
           
  Design creep strain (Ecc1 = fcgs*Øcc1*1E6/Egmi)  

=

{Ecc1}

  microstrain
  Loss in prestress due to creep (Pc1=Ecc1*Ep*Ap/1E9)  

=

{Pc1}

  kN
           
  Hog due to creep (Hgic = Øcc1*Htr)

=

{Hgic}

  mm
  Hog due to PS after losses:        
      Hgips = -(Pt+Pc1)*e*Lg*Lg*1E9/(8*Egmi*Ig)

=

{Hgips}

  mm
  Deflection due to selfweight (Dsw)

=

{Dsw}

  mm
   


 
 

Total hog at installation:  

 

{Hgi}

  mm (Hgic+Hgips+Dsw)
           
           
  Girder hog after installation       {DEC 0}
           
  Girder hog due to creep of girder after installation
           
  Estimated life of girder after installation (Ty)

=

{Ty}

  years {DEC 2}
           
  Basic creep factor (Øccb3)

=

{Occb3}

  {DEC 0}
  Exposed perimeter (Gp)

=

{Gp}

  mm
  Void perimeter (Vp)

=

{Vp}

  mm
  28 day girder concrete strength (f'cg)

=

{f'cg}

  MPa
  Final Prestress Force (P)

=

{P}

  kN
           
  Area of composite section (Ac)

=

{Ac}

  mm^2
  Young's Modulus of girder at 28 days (Eg)

=

{Eg}

  MPa {DEC 1}
           
  Theoretical thickness (th2 = 2*Ac/(Gp+0.5*Vp)

=

{th2}

  mm {DEC 2}
           
  Strength Ratio (Fratio4 = f'cg/f'cg)  

=

{Fratio4}

   
  Creep factor k2d at installation

=

{k2d}

  {CODE} (Fig 6.1.8a)
  Creep factor k2f after Ty years

=

{k2f}

  {CODE} (Fig 6.1.8a)
  Creep factor k3f

=

{k3f}

  {CODE} (Fig 6.1.8b)
  Design creep factor (Øcc3 = Øccb3*(k2f-k2d)*k3f)

=

{Occ3}

  {DEC 1}
           
  Hog due to elastic creep (Hel = Hgips+Dsw+Ddl)

=

{Hel}

  mm
           
  Hog due to final PS after losses:        
      Hgfps= - P*e*Lg*Lg*10^9/(8*Egmt*Ig)

=

{Hgfps}

  mm
  Hog due to final creep after time Ty (Hgfc = Øcc3*Hel)

=

{Hgfc}

  mm
  Deflection due to selfweight (Dsw)

=

{Dsw}

  mm
  Deflection due to deck slab & bitumen (Ddl)

=

{Ddl}

  mm
   


 
 

Total final hog :  

 

{Hgf}

  mm (Hgfps+Hgfc+Dsw+Ddl)