ACES PSC Design Module V{VERSION}: Run date: {DATE}
-------------------------------------------------------------------------------------------------
Heading: {PROJECT}
Job Name: {JOBNAME}
Designer: {DESIGNER}
Comments: {COMMENT1}
Units: mm, kN, kN.m, MPa
Design Code: {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------
DEFORMATIONS
Deflections and hog are calculated at midspan only | |||||
Axial shortening and hog at transfer | |||||
{DEC 2} | |||||
Girder length (Lg) |
= |
{Lg} |
m {DEC 0} | ||
Mean Young's Modulus of girder at transfer (Egmt) |
= |
{Egmt} |
MPa | ||
Mean Young's Modulus of girder at erection (Egmi) |
= |
{Egmi} |
MPa | ||
Elastic axial shortening: | |||||
Prestressing force at transfer for hog (Ptm) |
= |
{Ptm} |
kN | ||
Area of girder (Ag) |
= |
{Ag} |
mm^2 | ||
Elastic axial shortening (Xe = Pt*Lg*1E6/(Ag*Egmt)) |
= |
{Xe} |
mm {DEC 1} | ||
Shortening due to shrinkage: | |||||
Theoretical thickness (th3) |
= |
{th3} |
{DEC 3} | ||
Shrinkage coefficient k1 as per Fig 6.1.7 (k1s) |
= |
{k1s} |
{DEC 1} | ||
Shrinkage strain at erection (u3 = k1s*850) |
= |
{u3} |
microstrain | ||
Shortening due to shrinkage (Xs = u3*Lg/1000) |
= |
{Xs} |
mm {DEC 3} | ||
Shortening due to creep: | |||||
Shrinkage coefficient k2 as per Fig 6.1.8 (k2sc) |
= |
{k2sc} |
|||
Shrinkage coefficient k3 as per Fig 6.1.8 (k3sc) |
= |
{k3sc} |
{DEC 3} | ||
Design creep factor Øcc (Øccsc) |
= |
{Occsc} |
{DEC 1} | ||
Stress at the CG of strand group (fcscgs) |
= |
{fcscgs} |
|||
Creep strain at erection (u4 = fcscgs*Øccsc*1E6/Egmi) |
= |
{u4} |
microstrain | ||
Shortening due to creep (Xc = u4*Lg/1000) |
= |
{Xc} |
mm | ||
Total axial shortening (Xa = Xe + Xs + Xc) |
= |
{Xa} |
mm | ||
Deflection due to selfweight (Dsw): | {EXP4} | ||||
Girder moment of inertia (Ig) |
= |
{Ig} |
mm^4 {DEC 1} | ||
Moment due to self weight (Mswx) |
= |
{Mswx} |
kN.m | ||
Dsw = 40*Mswx*Lg*Lg*1E12/(384*Egmt*Ig) |
= |
{Dsw} |
mm | ||
Hog due to prestress: | |||||
Eccentricity of strand group (e) |
= |
{e} |
mm | ||
Hps = - Pt*1000*e*(Lg*1000)^2/(8*Egmt*Ig) |
= |
{Hps} |
mm | ||
Nett hog at transfer: (Htr = Dsw + Hps) |
= |
{Htr} |
mm | ||
Deflection due to deck & SDL loads | {DEC 0} | ||||
Young's modulus of girder at installation (Egmi) |
= |
{Egmi} |
MPa {EXP4} | ||
Composite moment of inertia (Ic) |
= |
{Ic} |
mm^4 {DEC 1} | ||
Moment due to insitu deck (Mslabx) |
= |
{Mslabx} |
kN.m | ||
Moment due to hotmix/bitumen (Msdlx) |
= |
{Msdlx} |
kN.m | ||
Deflection due to insitu deck slab: | {DEC 2} | ||||
Ddeck = 40*Mslabx*Lg*Lg*1000^12/(384*Egmi*Ig) |
= |
{Ddeck} |
mm | ||
Deflection due to hotmix/bitumen: |
= |
||||
Dsdl = 40*Msdlx*Lg*Lg*1000^12/(384*Eg*Ic) |
= |
{Dsdl} |
mm | ||
Total DL deflection (Ddl = Ddeck + Dsdl) |
= |
{Ddl} |
mm | ||
Design Live Load deflection | |||||
Deflection due to design Live Load (Dll) |
= |
{Dll} |
mm | ||
Allowable deflection (Dperm = Lg*1000/Drperm) |
= |
{Dperm} |
mm | ||
Live Load Deflection Ratio (Dratio = Lg*1000/Dll) |
= |
{Dratio} |
|||
Allowable Live Load Deflection Ratio (Drperm) |
= |
{Drperm} |
Must be < {Dratio} | ||
Girder hog between transfer & installation | {DEC 0} | ||||
Girder hog due to creep of girder between transfer and installation | |||||
Number of days to installation of girder (Ti) |
= |
{Ti} |
days {DEC 2} | ||
Basic creep factor (Øccb1) |
= |
{Occb1} |
{DEC 0} | ||
Exposed perimeter (Per) |
= |
{Per} |
mm | ||
Girder concrete strength at installation (f'cmi) |
= |
{f'cmi} |
MPa | ||
Area of girder (Ag) |
= |
{Ag} |
mm^2 | ||
Young's Modulus of girder at installation (Egmi) |
= |
{Egmi} |
MPa {EXP4} | ||
Young's Modulus of PS strands (Ep) |
= |
{Ep} |
MPa {DEC 0} | ||
Area of strand steel (Ap) |
= |
{Ap} |
mm2 {DEC 2} | ||
Stress at the CG of strand group (fcgs) |
= |
{fcgs} |
MPa {DEC 1} | ||
Theoretical thickness (th1 = 2*Ag/Per) |
= |
{th1} |
mm {DEC 2} | ||
Strength Ratio (Fratio3 = f'cmi/f'cg) |
= |
{Fratio3} |
|||
Creep factor k2c (Fig 6.1.8a) |
= |
{k2c} |
|||
Creep factor k3c (Fig 6.1.8b) |
= |
{k3c} |
|||
Design creep factor (Øcc1 = Øccb1*k2*k3) |
= |
{Occ1} |
{DEC 1} | ||
Design creep strain (Ecc1 = fcgs*Øcc1*1E6/Egmi) |
= |
{Ecc1} |
microstrain | ||
Loss in prestress due to creep (Pc1=Ecc1*Ep*Ap/1E9) |
= |
{Pc1} |
kN | ||
Hog due to creep (Hgic = Øcc1*Htr) |
= |
{Hgic} |
mm | ||
Hog due to PS after losses: | |||||
Hgips = -(Pt+Pc1)*e*Lg*Lg*1E9/(8*Egmi*Ig) |
= |
{Hgips} |
mm | ||
Deflection due to selfweight (Dsw) |
= |
{Dsw} |
mm | ||
|
|
|
|||
Total hog at installation: |
{Hgi} |
mm (Hgic+Hgips+Dsw) | |||
Girder hog after installation | {DEC 0} | ||||
Girder hog due to creep of girder after installation | |||||
Estimated life of girder after installation (Ty) |
= |
{Ty} |
years {DEC 2} | ||
Basic creep factor (Øccb3) |
= |
{Occb3} |
{DEC 0} | ||
Exposed perimeter (Gp) |
= |
{Gp} |
mm | ||
Void perimeter (Vp) |
= |
{Vp} |
mm | ||
28 day girder concrete strength (f'cg) |
= |
{f'cg} |
MPa | ||
Final Prestress Force (P) |
= |
{P} |
kN | ||
Area of composite section (Ac) |
= |
{Ac} |
mm^2 | ||
Young's Modulus of girder at 28 days (Eg) |
= |
{Eg} |
MPa {DEC 1} | ||
Theoretical thickness (th2 = 2*Ac/(Gp+0.5*Vp) |
= |
{th2} |
mm {DEC 2} | ||
Strength Ratio (Fratio4 = f'cg/f'cg) |
= |
{Fratio4} |
|||
Creep factor k2d at installation |
= |
{k2d} |
{CODE} (Fig 6.1.8a) | ||
Creep factor k2f after Ty years |
= |
{k2f} |
{CODE} (Fig 6.1.8a) | ||
Creep factor k3f |
= |
{k3f} |
{CODE} (Fig 6.1.8b) | ||
Design creep factor (Øcc3 = Øccb3*(k2f-k2d)*k3f) |
= |
{Occ3} |
{DEC 1} | ||
Hog due to elastic creep (Hel = Hgips+Dsw+Ddl) |
= |
{Hel} |
mm | ||
Hog due to final PS after losses: | |||||
Hgfps= - P*e*Lg*Lg*10^9/(8*Egmt*Ig) |
= |
{Hgfps} |
mm | ||
Hog due to final creep after time Ty (Hgfc = Øcc3*Hel) |
= |
{Hgfc} |
mm | ||
Deflection due to selfweight (Dsw) |
= |
{Dsw} |
mm | ||
Deflection due to deck slab & bitumen (Ddl) |
= |
{Ddl} |
mm | ||
|
|
|
|||
Total final hog : |
{Hgf} |
mm (Hgfps+Hgfc+Dsw+Ddl) |