ACES - PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE$} (Section 8.2) {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}

 

Distance (x) of section from the first node  = {x}  mm

 

 

 

Strand segment number:  {SectSSeg}

 

Passive R/F segment number:  {SectPSeg}

SHEAR & TORSION DESIGN   

 

Design parameters:

 

 

 

 

Design torsion (T*)

=

{Tdesign}

 

kN.m

Design shear force  (V*)

 =

{Vdesign}

  

kN

Design moment  (M*)

=

{Mdesign}

 

kN.m

 

Design axial force (N*)

=

{Ndesign}

 

kN.m

Final design prestress force  (P)

=

{P}

 

kN

 

 

 

28 day girder concrete strength (f'c)

=

{f'cg}

 

MPa

 

Yield stress of shear & torsion reinforcement (fsy.f)

=

{fsysr}

 

MPa

 

Young’s modulus of concrete  (Ec)

=

{Eg}

 

MPa

 

Young’s modulus of prestressing strand  (Ep)

=

{Ep}

 

MPa

 

Young’s modulus of steel reinforcement  (Es)

=

{Ep}

 

MPa

 

 

 

 

 

{DEC 1}

 

Capacity reduction factor for shear (Øs)

=

{Os}

 

 

 

Capacity reduction factor for torsion (Øt)

=

{Ot}

 

{DEC 0}

 

 

 

 

 

 

 

Check if torsional effects are to be considered:   (Clause 8.2.1.2)

 

 

 

 

 

 

 

Torsional effects are to be considered if  T* > 0.25ØtTcr

 

 

 

Eq 8.2.1.2(1)

 

    where the torsional cracking moment (Tcr) is given by:   

 

 

 

 

 

    Tcr = 0.33*(f`c^0.5)*(Acp^2/uc)*SQR((1+scp/(.33f’c^2)))

=

{Tcr}

 

kN.m  (Eq 8.2.1.2(2))

    perimeter of outside cross-section resisting torsion  (uc

=

{uc}

 

mm 

    total area enclosed by outer perimeter of concrete section  (Acp)

=

{Acp}

 

mm^2  {DEC 1}

 

    effective prestress at the centroid of the concrete cross-section  (scp)

=

  {Scp}

 

MPa  {DEC 0}

 

    therefore  Tcrmin = 0.25ØtTcr

=

{Tcrmin}

 

kN.m 

 

    and the design torsion (T*)

=

{Tdesign}

 

kN.m

 

{TorChck$} 

 

 

Check torsional requirements for cellular structures:   

 

 

 

 

 

 

 

This check requires that  Acp^2/pc  <= 2Ao*bv

(Eq 8.2.1.2(3)) 

    where area enclosed by outermost line of closed stirrups  (Aoh)

=

{Aoh}

 

mm^2 

    area enclosed by the shear flow path  (Ao = 0.85Aoh)

=

{Ao}

 

mm^2  (Cl. 8.2.5.6)

    outside perimeter of the concrete cross-section (pc = uc)

=

{uc}

 

mm

 

    effective width of both webs for shear (bv)

=

{bv}

 

mm

 

    Set  a1 = Acp^2/pc 

=

{a1}

 

 

 

    and a2 = 2Ao*bv

=

{a2}

 {TrCheck$} 

{DEC 0}

 

 

Equivalent shear (V*eq) due to combined shear + torsion:    

 

 

 

 

 

 

 

   Equivalent shear is given by  V*eq = V* + T*ds/2Ao

=

{Veq}

kN  (Eq 8.2.1.2(5))

   Area enclosed by the shear flow path  (Ao)

=

{Ao}

 

mm^2

 

   Dist. from extreme compn fibre to centroid of non-PS tensile RF (Dcfcnp)

=

{Dcfcnp}

 

mm

 

 

 

 

 

 

 

Longitudinal strain εx for shear at mid-depth of section:   (Eqn 8.2.4.4(1))

 

 

   εx = [(M*/dv)+SQR(V*^2+(0.9T*uh/2Ao)^2)+0.5N* – Apt*fpo]/2(EsAst+EpApt)

 

   Effective shear depth dv is the greater of .72D and .9d    (dv)

=

{dv}

 

mm

 

   Dist. from extreme compn fibre to centroid of all steel in tension  (d)

=

{dcts}

 

mm

 

   Overall depth of composite section                                   (D)

=

{D}

 

mm

 

   Stress in PS strands when surrounding conc. stress = 0   (fpo)

=

{fpo}

 

MPa

   Perimeter of centreline of closed transverse torsion RF  (uh)

=

{uh}

 

mm  

 

   Area of tendons in tensile zone at ultimate load              (Apt)

=

{Atens}

 

mm^2

 

   Area of reinforcement in tensile zone at ultimate load    (Ast)

=

{Ast}

 

mm^2

               ({PasNote$})

 

{DEC 6}

 

   Set  ex1 = εx  = ex

=

{ex1}

 

{DEC 0}

 

 

If εx < 0 then recalculate εx with Ec*Act in denominator where:

 

 

 

(Eq 8.2.4.4(2))

 

   Act = area of concrete from mid-depth on flexural tensile side

=

{Act}

 

mm^2  {DEC 6}

 

   Set  ex2 = εx    (If ex2 > 0 set ex2 = 0)

=

{ex2}

    and εx = ex = minimum of ex1 and ex2

=

{ex}

 

 

 

 

 

 

{DEC 0}

 

Check if  M* >= dv*SQR(V*^2 + (0.9T*uh/2Ao)^2)                      

 

(Eq 8.2.4.4(3))

   Where the design moment  M*

=

{Mdesign}

 

kN.m 

   and  dv*SQR(V*^2 + (0.9T*uh/2Ao)^2)   =  Mexmin

=

{Mexmin}

 

kN.m   {DEC 0}

 {MexChck$} 

 

 

 

 

 

 

 

Contribution of concrete (Vuc) to the ultimate shear strength:   (Eqn 8.2.4.1)

 

 

 

 

 

 

   Vuc = kv*SQR(f’c)*bv*dv

=

{Vuc}

kN   {DEC 3}

 

   where  kv = 0.4/(1+1500*εx)

=

{kv}

 

(Eq 8.2.4.2(4))

 

 

 

 

 

{DEC 1}

Angle of inclination of concrete compression strut  (θv)

(Eq 8.2.4.2(5))

   θv = 29 + 7000*εx

=

{Ov}

Deg. 

 

 

{DEC 0}

 

Calculate requirements for transverse shear reinforcement: 

 

 

 

 

 

 

Reinforcement must be provided if  V* > Vucap                        

(Eq 8.2.1.6)

   where the design shear force  V*

=

{Vdesign}

kN 

   and  Vucap = 0.5*Øs*(Vuc + Pv)      (Note: for straight strands  Pv = 0)

=

{Vucap}

kN   {DEC 2}

   Øs = capacity reduction factor for shear

=

{Os}

{DEC 0}

 

 {ShearRF$} 

 

 

 

 

 

 

 

Shear force (Vus) carried by transverse reinforcement:   (Clause 8.2.5.2)

 

 

 

 

 

 

  where Vus = (Asv*fsy.f*dv/s)*cot(θv)

=

{Vus}

kN  (Eq 8.2.5.2(1)

 

   and dv = effective shear depth

=

{dv}

 

mm

   s = centre to centre spacing of shear reinforcement

=

{s}

 

mm

   Asv = area of steel stirrups provided by {nVbars} / {Dsr}  diam. bars

=

{Asv}

 

mm^2  {DEC 1}

   θv = angle of inclination of concrete compression strut

=

{Ov}

Deg.     {DEC 0}

 

   fsy.f  = yield stress of shear & torsion reinforcement

=

{fsysr}

 

MPa

 

 

 

Minimum required transverse shear  reinforcement:   (Clause 8.2.1.7)

 

 

 

 

 

 

   Asvmin = 0.08*SQR(f’c)*bv*s / fsy.f

=

{Asvmin}

mm^2

   where bv = combined width of both webs

=

{bv}

 

mm

 

    f'c  = 28 day girder concrete strength

=

{f'cg}

 

MPa

   Asv = area of steel stirrups provided

=

{Asv}

 

mm^2 

 

 {MinShRF$} 

 

 

 

 

 

  

 

 

 

 

 

Design shear strength (Vu) of section:   (Clause 8.2.3.1)

 

 

 

 

 

 

   Design shear strength is given by  Vu = Vuc + Vus + Pv  (and Pv=0)

=

{Vu}

kN  

   Factored shear strength  =   Øt*Vu

=

{phiVu}

kN

 

   Equivalent shear due to combined shear & torsion (V*eq)

=

{Veq}

kN 

 

 {VuNote1$} 

 

 

 

 

 

 

 

 

 

 

 

Check if ultimate shear strength (Vu.max) is limited by web crushing:  

 

 

 

 

 

 

 

Web crushing should not occur before the ultimate shear strength (Vu.max) is reached:

   where Vu.max = 0.55*f’c*bv*dv[(cot(θv)+cot(av))/(1+cot(θv)^2)] + Pv

=

{Vumax}

kN  (Eq 8.2.3.3(1))

   av = angle of inclined transverse RF to the longitudinal RF

=

90°

 

(Note:  Pv = 0)

   and the design shear strength Vu

=

{Vu}

kN  

 

 {VuNote2$} 

 

 

 

 

 

 

 

 

 

 

 

Check web crushing due to combined shear and torsion:    (Clause 8.2.4.5)

 

 

 

 

 

 

 

Minimum wall thickness (twmin) required to avoid crushing from combined shear & torsion

 

    twmin = Aoh/uh   

=

{twmin}

 

mm  (Eq 8.2.4.5(1))

    where Aoh = area enclosed by outermost line of closed stirrups

=

{Aoh}

 

mm^2 

    uh = perimeter of centreline of closed transverse torsion RF

=

{uh}

 

mm

    and  tw = thickness of walls = 2bw

=

{tw}

 

mm  {DEC 2}

 {WebCrsh$} 

(Eq 8.2.4.5(2))

  

If twmin > tw then  V*/(bv*dv) + T*/(1.7*tw*Aoh)  <=  Øt*Vumax/(bv*dv)

(Eqn 8.2.4.5(2))

   where  V*/(bv*dv) + T*/(1.7*tw*Aoh) = Svt

=

{Svt}

 

N/mm^2

 

   and      Øt*Vumax/(bv*dv)  =  Svmax

=

{Svmax}

 

N/mm^2

 

{Crush$} 

 

 

 

{DEC 0}

 

 

 

 

 

 

 

Torsional resistance (Tus) of section:    

 

 

 

 

 

 

 

   Tus = 2*Ao*(Asw*fsy.f/s)*cot(θv)

=

{Tus}

kN.m  (Eq 8.2.5.6)

   where Asw = cross sectional area of bars forming the closed fitment

=

{Asw}

 

mm^2

   Ao = area enclosed by the shear flow path 

=

{Ao}

 

mm^2

 

   and the design torsion (T*)

=

{Tdesign}

 

kN.m

 

{TusNote$} 

 

 

 

 

 

 

 

 

 

 

 

Minimum required torsional reinforcement:    (Clause 8.2.5.5)

 

 

 

 

 

 

Torsional strength of section Tus must be > than the cracking torque

(Eq 8.2.5.5(1)

 

   where Tus

=

{Tus}

 

   and the torsional cracking moment (Tcr)

=

{Tcr}

kN.m  {DEC 2} 

 

{TcrNote$} 

 

 

 

 

 

 

Must also satisfy the requirement that:   Asw/s  >=  0.2*y1/fsy.f

(Eq 8.2.5.5(2)

 

   where  Asw/s

=

{ReoRatio}

   0.2*y1/fsy.f = fsyRatio

=

{fsyRatio}

 

{DEC 0} 

   Asw = cross sectional area of bars forming the closed fitment

=

{Asw}

 

mm^2

   s = centre to centre spacing of shear reinforcement

=

{s}

 

mm

   y1 = larger overall dimension of the closed filament

=

{y1}

 

mm

 

{ReoRati$} 

 

 

 

 

 

 

 

 

 

 

 

Required transverse reinforcement for combined shear and torsion:   (Clause 8.2.5.3)

 

 

 

 

 

 

 

Area of steel required for shear  (rearrange Eqn 8.2.5.2(1))

 

 

 

 

 

      Asv =  (V* - ØsVuc)*s / (fsy.f*dv*cot(θv))  (for two webs)

=

  {Aswsv}

 

mm^2

 

 

 

 

 

 

 

Area of steel required for torsion  (rearrange Eqn 8.2.5.6)

 

 

 

 

 

      Asw =  T*s / (2*Ao*fsy.f*cot(θv))

=

  {Aswst}

 

mm^2

 

 

Total area of transverse steel required Asvtotl= 0.5Asvr + Aswr

=

  {Asvtotl}

 

mm^2

Minimum required area of transverse steel =  Asvmin

=

{Asvmin}

mm^2

{Asvmin$}   

 

 

 

 

 

 

 

Determine required longitudinal reinforcement on flexural tension side   (Clause 8.2.7)

 

 

 

 

 

 

 

Additional longitudinal force due to shear and tension is given by:

 

 

 

 

 

    ΔFtd = SQR[((V* - ypPv) – (0.5ØsVus))^2 +(0.45uhT*/2Ao)^2] cot(θv)

=

  {deltaFtd}

 

kN  (Pv = 0)

Factored additional longitudinal design force = ΔFtd/Øs = ReqdFt 

=

  {ReqdFt}

 

kN

 

Area of additional longitudinal bars needed to resist this force = AbarsFt

=

  {AbarsFt}

 

 

Additional longitudinal force produced by these bars = ΔAsfsy = ActualFt

=

  {ActualFt}

 

kN

 

Factored longitudinal design force = ΔFtd/Øs = ReqdFt must be < ActualFt

 

{AsNote1$} 

 

 

Determine required longitudinal reinforcement on flexural compression side   (Clause 8.2.8)

 

 

 

 

 

 

 

Additional longitudinal force due to shear and torsion given by:

 

 

 

 

 

   ΔFcd = ΔFtd – F*c =  incFcd 

=

  {incFcd}

 

kN  (Pv = 0)

   where F*c = design force in comp. zone due to flexure & axial actions

=

  {Fc}

 

kN

   and   ΔFcd

=

  {Fclong}

 

kN

{AsNote2$} 

 

 

   Area of additional longitudinal bars required to resist ΔFcd = AbarsFc

=

  {AbarsFc}

 

 

   Additional longitudinal force produced by these bars = As*fsy

=

  {ActualFc}

 

kN

 

{AsNote3$}