ACES PSC Design Module V{VERSION}: Run date: {DATE}
-------------------------------------------------------------------------------------------------
Heading: {PROJECT}
Job Name: {JOBNAME}
Designer: {DESIGNER}
Comments: {COMMENT1}
Units: mm, kN, kN.m, MPa
Design Code: {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------
SECTION: {Sectnum} ({SecName$})
|
Distance (x) of section from the first node = {x} mm |
|
|
|
Strand segment number: {SectSSeg} |
|
Passive R/F segment number: {SectPSeg} |
ULTIMATE MOMENT CHECK {DEC 0}
|
Strand data: |
|
|
|
|
|
Ultimate breaking force of PS strand (Pult) |
= |
{Pult} |
|
kN |
|
Ult breaking stress of PS strand (fp = 1000*Pult/Aps) |
= |
{fp} |
|
MPa |
|
Total area of bonded prestressing strands (Ap) |
= |
{Ap} |
|
mm^2 |
|
Distance of CG strand group from bottom of girder (Ycgs) |
= |
{Ycgs} |
|
mm |
|
Distance of CG strand group to top of sectn (Dp=D-Ycgs) |
= |
{Dp} |
|
mm |
|
|||||
Strand rupture stress (fpus) |
= |
{fpus} |
|
MPa {DEC 4} |
|
|
Strand rupture strain (epus) |
= |
{epus} |
|
|
Strand yield strain (epy) |
= |
{epy} |
|
||
Strand yield strain factor (epyf) |
= |
{epyf} |
|
{DEC 0} |
|
Yield stress of strand (fpy) |
= |
{fpy} |
|
MPa |
|
|
|
|
|
|
|
|
Section data: |
|
|
|
|
|
Overall depth of composite section (D) |
= |
{D} |
|
mm |
|
Actual width of insitu slab (Ws) |
= |
{Ws} |
|
mm |
|
Effective slab width for moment (bef) |
= |
{bef} |
|
mm {DEC 1} |
|
Web inclination angle (ThetaWeb) |
= |
{ThetaWeb} |
|
Degrees |
|
Concrete strength of deck slab (f'cs) |
= |
{f'cs} |
|
MPa {DEC 0} |
|
|
|
|
|
|
|
Passive reinforcement data: |
|
|
|
|
|
Area of longitudinal reinforcement in tensile zone (Ast) |
= |
{Ast} |
|
mm^2 |
|
Area of longitudinal compressive reinforcement (Asc) |
= |
{Asc} |
|
mm^2 {DEC 0} |
|
Yield strength of longitudinal reinforcement (fsy) |
= |
{fsy} |
|
MPa {DEC 0} |
|
Young's Modulus of longitudinal reinforcement (Esr) |
= |
{Esr} |
|
MPa {DEC 3} |
|
|
|
|
|
|
|
Factors & coefficients: |
|
|
|
|
|
Equivalent compressive stress coefficient (Srf) |
= |
{Srf} |
|
(AS5100 Section 8.1.2.2) |
|
Ultimate tendon stress coefficient (k1u) |
= |
{k1u} |
|
(AS5100 Section 8.1.5) |
|
|
|
|
|
|
|
Ultimate tendon stress coefficient (k2u) is given by: |
|
|
|
|
|
k2u = (Ap*fp+(Ast-Asc)*fsy)/(Ws*Dp*f'cs) |
= |
{k2u} |
|
(AS5100 Section 8.1.5) |
|
|
|
|
|
|
|
Neutral axis depth parameter (Gamma = v) where |
|
|
|
|
|
v = Srf - 0.007*(f'cs - 28) |
= |
{v} |
|
(AS5100 Section 8.1.2.2) |
|
|
|
|
|
|
|
Forces in prestressing strand: |
|
|
|
{DEC 3} |
|
|
|
|
|
|
|
{CalcDcb$} |
|
|
|
{DnNote$} |
|
|
|
|
|
|
|
Concrete strain at ultimate (ucu) |
= |
{ucu} |
|
{DEC 1} |
|
Depth to Neutral Axis (dn) |
= |
{dn} |
|
mm |
|
Depth of compression block (gammaDn = v*dn) |
= |
{gammaDn} |
|
mm |
|
Overall depth of composite section (D) |
= |
{D} |
|
mm |
|
Ultimate strand design strength (fpu = fp*(1 - k1u*k2u/v)) |
= |
{fpu} |
|
MPa (AS5100 Section 8.1.5) |
|
Area of a single strand (Aps) |
= |
{Aps} |
|
mm^2 {DEC 0} |
Row No. |
Yb (mm) |
No. bonded strands |
Dp (mm) |
Ap (mm2) |
Force (kN) |
Stress State |
Moment (kN.m) |
{%i} |
{Ybarri} |
{Nbarbi} |
{Dpbari} |
{Apbari} |
{Fbari} |
{Yelds$i} |
{Mbari} |
|
|
|
|
{Apt} |
{Fps} |
|
{Mcss} |
|
Where for each row of strands: |
|
|
|
|
|
Dp = D – Yb (Yb is the distance of the strand from the bottom of the girder) |
||||
|
Ap = No bonded strands*Aps |
|
|
|
|
|
Force = Ap*fpu/1000 |
|
|
|
|
|
|
|
|
|
|
|
Total tensile force in PS strands (Fps) |
= |
{Fps} |
|
kN |
|
Moment capacity of PS strands (Mcss) |
= |
{Mcss} |
|
kN.m {DEC 3} |
|
|
|
|
|
|
|
Forces in passive reinforcement: |
|
|
|
|
|
|
|
|
|
|
|
Concrete strain at ultimate (ucu) |
= |
{ucu} |
|
{DEC 1} |
|
Depth to Neutral Axis (dn) |
= |
{dn} |
|
mm |
|
Depth of compression block (gammaDn) |
= |
{gammaDn} |
|
mm |
|
Flexural strength of longitudinal reinforcement (fsy) |
= |
{fsy} |
|
MPa {DEC 0} |
Row No. |
Yb (mm) |
No. of bars |
Dp (mm) |
Arf (mm2) |
Force (kN) |
Stress State |
Moment (kN.m) |
{%i} |
{Yrfi} |
{Nrfbrsi} |
{Dprfi} |
{Arfi} |
{Fbrfi} |
{Yeldr$i} |
{Mbrfi} |
|
|
|
|
{Arft} |
{Frf} |
|
{Mcsr} |
|
Total area of passive reinforcement (Arft) |
= |
{Arft} |
|
mm^2 |
|
Area of passive reinforcement in tension zone (Arft) |
= |
{Ast} |
|
mm^2 |
|
Area of passive reinforcement in compresn zone (Asc) |
= |
{Asc} |
|
mm^2 |
|
|
|
|
|
|
|
Total tensile force in passive reinforcement (Frf) |
= |
{Frf} |
|
kN |
|
Moment capacity of reinforcement (Mcsr) |
= |
{Mcsr} |
|
kN.m {DEC 2} |
|
|
|
|
|
|
|
Check for over-reinforcement (Ku) |
|
|
|
|
|
Ku = dn/(1000*Msteel/Fsteel) |
= |
{Ku} |
|
{KuNote$} |
|
|
|
|
|
|
|
Compression force in concrete: |
||||
|
|
||||
|
{CalcDcb$} |
|
|
|
{DnNote$} |
|
|
|
|
|
|
|
Equivalent compressive stress coefficient (Srf) |
= |
{Srf} |
|
{DEC 1} |
|
Ultimate concrete compression strength (fuc = Srf*f'cs) |
= |
{fuc} |
|
MPa |
|
|
|
|
|
|
|
Moment capacity of concrete (Mc) |
= |
{Mc} |
|
kN.m ({McNote$}) |
|
For the simplified method: |
|
|
|
|
|
Mc = - fuc*Ws*dn*dn/(2.*1000) |
|
|
|
|
|
For the strain compatibility method: |
|
|
|
|
|
Force in slab concrete (Fultcs) |
= |
{Fultcs} |
|
kN |
|
Force in flange concrete (Fultcf) |
= |
{Fultcf} |
|
kN |
|
Force in web concrete (Fultcw) |
= |
{Fultcw} |
|
kN |
|
Moment capacity of slab conc (Multcs) |
= |
{Multcs} |
|
kN |
|
Moment capacity of flange conc (Multcf) |
= |
{Multcf} |
|
kN |
|
Moment capacity of web conc (Multcw) |
= |
{Multcw} |
|
kN |
|
|
|
|
|
|
|
Design Ultimate Capacity: |
|
|
|
{DEC 0} |
|
|
|
|
|
|
|
Moment cap. of strand + passive RF (Mcs = Mcss+Mcsr) |
= |
{Mcs} |
|
kN.m |
|
Moment capacity of concrete (Mc) |
= |
{Mc} |
|
kN.m |
|
Ultimate moment capacity of section (Mu = Mcs + Mc) |
= |
{Mu} |
|
kN.m {DEC 3} |
|
|
|
|
|
|
|
Ultimate moment capacity reduction factor (Øm) |
= |
{Om} |
|
(AS5100 Table 2.2) {DEC 0} |
|
Design ultimate capacity (ØMu = Øm*Mu) |
= |
{OMu} |
|
kN.m |
|
Ultimate Load Factors and Combinations: (Critical combination number = {ULScombu}) |
{DEC 1} |
Combinations |
DL |
Sec. PS |
SDL |
Diff. Shrink. |
Residual Creep |
Diff. Settlemnt |
LL |
Diff. Temp. |
User Transient |
Include? |
1 |
{LfUDLC1} |
{LfUPsC1} |
{LfUSDLC1} |
{LfUDshC1} |
{LfUReCC1} |
{LfUDStC1} |
{LfULLC1} |
{LfUDTeC1} |
{LfUUTrC1} |
{IncULSC1} |
2 |
{LfUDLC2} |
{LfUPsC2} |
{LfUSDLC2} |
{LfUDshC2} |
{LfUReCC2} |
{LfUDStC2} |
{LfULLC2} |
{LfUDTeC2} |
{LfUUTrC2} |
{IncULSC2} |
3 |
{LfUDLC3} |
{LfUPsC3} |
{LfUSDLC3} |
{LfUDshC3} |
{LfUReCC3} |
{LfUDStC3} |
{LfULLC3} |
{LfUDTeC3} |
{LfUUTrC3} |
{IncULSC3} |
4 |
{LfUDLC4} |
{LfUPsC4} |
{LfUSDLC4} |
{LfUDshC4} |
{LfUReCC4} |
{LfUDStC4} |
{LfULLC4} |
{LfUDTeC4} |
{LfUUTrC4} |
{IncULSC4} |
5 |
{LfUDLC5} |
{LfUPsC5} |
{LfUSDLC5} |
{LfUDshC5} |
{LfUReCC5} |
{LfUDStC5} |
{LfULLC5} |
{LfUDTeC5} |
{LfUUTrC5} |
{IncULSC5} |
6 |
{LfUDLC6} |
{LfUPsC6} |
{LfUSDLC6} |
{LfUDshC6} |
{LfUReCC6} |
{LfUDStC6} |
{LfULLC6} |
{LfUDTeC6} |
{LfUUTrC6} |
{IncULSC6} |
Critical Combination |
{LfULSDL} |
{LfULSPS} |
{LfULSSDL} |
{LfULSDSh} |
{LfULSRcr} |
{LfULSDSt} |
{LfULSLL} |
{LfULSDTe} |
{LfULSUTr} |
|
|
Ultimate Loads: {DEC 0} (Critical combination number = {ULScombu}) |
{DEC 1} |
|
|
|
Loading |
Moment (kN.m) |
Load Factor |
Ult. Moment (kN.m) |
Girder self-weight |
{Msw} |
{LfULSDL} |
{UMswfact} |
Insitu concrete slab |
{Mslab} |
{LfULSDL} |
{UMslafac} |
Superimposed DL |
{Msdl} |
{LfULSSDL} |
{UMSDLfac} |
Design Live Load |
{Mll} |
{LfULSLL} |
{UMLLfact} |
Secondary prestress |
{Msecpres} |
{LfULSPS} |
{UMPrefac} |
Secondary diff. Shrinkage |
{Mdiffshr} |
{LfULSDSh} |
{UMDshfac} |
Secondary residual creep |
{Mrescree} |
{LfULSRcr} |
{UMRCrfac} |
Secondary temperature * |
{Mdifftma} |
{LfULSDTe} |
{UMDTmafa} |
Differential settlement |
{Mdiffset} |
{LfULSDSt} |
{UMDSefac} |
User transient effects |
{Musertra} |
{LfULSUTr} |
{UMUsTfac} |
Ult Design Moment (Mu1) |
|
{Mu1} |
* The secondary temperature moment is the maximum of the “Hot Top” and “Cold Top” values
|
|
|
|
|
{DEC 0} |
|
Ultimate design moment (Mu1) |
= |
{Mu1} |
|
kN.m |
|
Design ultimate capacity or strength (ØMu) |
= |
{OMu} |
|
kN.m |
|
|
|
|
|
|
|
Effective depth for M* offset (Def) |
= |
{Def} |
|
mm (AS5100) |
|
|
|
|
|
|
|
Minimum allowable bending strength (Muomin) |
= |
{Muomin} |
|
kN.m |
where Muomin = 1.2*Mcr |
(AS5100 Eqn 8.1.4.1(1)) |
||||
and Mcr = Cracking moment (refer to Shear check) |
= |
{Mcr} |
|
kN.m |
|
|
|
|
|
|
|
|
Live Load Moment Capacity Rating |
|
|||
|
|
|
|
|
|
|
Moment due to self-weight (Msw) |
= |
{Msw} |
|
kN.m |
|
Moment due to slab (Mslab) |
= |
{Msw} |
|
kN.m |
|
Moment due to SDL (Msdl) |
= |
{Msw} |
|
kN.m |
|
Moment due to LL (Mll) |
= |
{Mll} |
|
kN.m {DEC 1} |
|
|||||
|
Load Factor on self-weight (LFsw) |
= |
{LFsw} |
|
|
|
Load Factor on deck slab (LFslab) |
= |
{LFslab} |
|
|
|
Load Factor on SDL (LFsdl) |
= |
{LFsdl} |
|
|
|
Load Factor on LL (LFll) |
= |
{LFll} |
|
{DEC 0} |
|
|
|
|
|
|
|
Design moment due to self-weight (Musw = LFsw*Msw) |
= |
{Musw} |
|
kN.m |
|
Design moment due to slab (Muslab = LFslab*Mslab) |
= |
{Muslab} |
|
kN.m |
|
Design moment due to SDL (Musdl = LFsdl*Msdl) |
= |
{Musdl} |
|
kN.m |
|
Design moment due to live load (Mull = LFll*Mll) |
= |
{Mull} |
|
kN.m |
|
|
|
|
|
|
|
Residual Live Load Capacity |
= |
{Mllcap} |
|
kN.m {DEC 1} |
(Mllcap = ØMu-Musw-Muslab-Musdl) |
|||||
|
|
|
|
|
|
|
Live Load Capacity Rating: (Muratll = Mllcap/Mull) |
= |
{Muratll} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|