ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}  ({SecName$})

 

Distance (x) of section from the first node = {x}  mm

 

 

 

Strand segment number:  {SectSSeg}

 

Passive R/F segment number:  {SectPSeg}

ULTIMATE MOMENT CHECK  {DEC 0}

 

Strand data:  

 

 

 

 

 

  Ultimate breaking force of PS strand (Pult)

=

{Pult}

   

kN

 

  Ult breaking stress of PS strand (fp = 1000*Pult/Aps)  

=

{fp}

   

MPa

 

  Total area of bonded prestressing strands    (Ap)

=

{Ap}

 

mm^2

 

  Distance of CG strand group from bottom of girder (Ycgs) 

=

 {Ycgs}

 

mm

 

  Distance of CG strand group to top of sectn (Dp=D-Ycgs) 

=

 {Dp}

 

mm

 

  Strand rupture stress  (fpus)

=

{fpus}

   

MPa  {DEC 4}

 

  Strand rupture strain  (epus)

=

{epus}

   

  Strand yield strain  (epy)

=

{epy}

   

  Strand yield strain factor  (epyf)

=

{epyf}

   

{DEC 0}

  Yield stress of strand   (fpy)

=

{fpy}

   

MPa

 

 

 

 

 

 

 

Section data:  

 

 

 

 

 

  Overall depth of composite section (D)

=

{D}

 

mm

 

  Actual width of insitu slab (Ws)

=

{Ws}

 

mm

 

  Effective slab width for moment (bef)

=

{bef}

 

mm  {DEC 1}

 

  Web inclination angle (ThetaWeb)

=

{ThetaWeb}

 

Degrees

 

  Concrete strength of deck slab (f'cs)

=

{f'cs}

 

MPa {DEC 0}

 

 

 

 

 

 

 

Passive reinforcement data:  

 

 

 

 

 

  Area of longitudinal reinforcement in tensile zone  (Ast)

=

  {Ast}

 

mm^2

 

  Area of longitudinal compressive reinforcement (Asc)  

=

  {Asc}

 

mm^2 {DEC 0}

 

  Yield strength of longitudinal reinforcement (fsy)

=

  {fsy}

 

MPa {DEC 0}

 

  Young's Modulus of longitudinal reinforcement (Esr)

=

  {Esr}

 

MPa {DEC 3}

 

 

 

 

 

 

 

Factors & coefficients: 

 

 

 

 

 

  Equivalent compressive stress coefficient (Srf)

=

{Srf}

 

(AS5100 Section 8.1.2.2)

 

  Ultimate tendon stress coefficient (k1u)

=

{k1u}

 

(AS5100 Section 8.1.5)

 

 

 

 

 

 

 

  Ultimate tendon stress coefficient (k2u) is given by: 

 

 

 

 

 

      k2u = (Ap*fp+(Ast-Asc)*fsy)/(Ws*Dp*f'cs)

=

{k2u}

 

(AS5100 Section 8.1.5)

 

 

 

 

 

 

 

  Neutral axis depth parameter (Gamma = v) where

 

 

 

 

 

      v = Srf - 0.007*(f'cs - 28)

=

{v}

 

(AS5100 Section 8.1.2.2)

 

 

 

 

 

 

 

Forces in prestressing strand:

 

 

 

{DEC 3}

 

 

 

 

 

 

 

{CalcDcb$}

 

 

 

{DnNote$}

 

 

 

 

 

 

 

Concrete strain at ultimate (ucu) 

=

{ucu}

 

{DEC 1}

 

Depth to Neutral Axis (dn) 

=

{dn}

 

mm

 

Depth of compression block (gammaDn = v*dn) 

=

{gammaDn}

 

mm

 

Overall depth of composite section (D)

=

{D}

 

mm

 

Ultimate strand design strength (fpu = fp*(1 - k1u*k2u/v))

=

 {fpu}

 

MPa (AS5100 Section 8.1.5)

 

Area of a single strand (Aps)

=

{Aps}

 

mm^2 {DEC 0}

 

Row No.

Yb (mm)

 No. bonded strands 

Dp (mm)

Ap (mm2)

Force (kN)

Stress State

Moment (kN.m)

{%i}

{Ybarri} 

{Nbarbi}

  {Dpbari}  

  {Apbari}  

  {Fbari}  

  {Yelds$i}  

  {Mbari}  

 

 

 

 

  {Apt}  

  {Fps}  

 

  {Mcss}  

 

 

 

Where for each row of strands:

 

 

 

 

 

    Dp = D – Yb  (Yb is the distance of the strand from the bottom of the girder)

 

    Ap = No bonded strands*Aps

 

 

 

 

 

    Force = Ap*fpu/1000

 

 

 

 

 

 

 

 

 

 

 

Total tensile force in PS strands (Fps)

=

  {Fps}

 

kN

 

Moment capacity of PS strands (Mcss) 

=

  {Mcss}

   

kN.m {DEC 3}

 

 

 

 

 

 

 

Forces in passive reinforcement:

 

 

 

 

 

 

 

 

 

 

 

Concrete strain at ultimate (ucu)

=

{ucu}

 

{DEC 1}

 

Depth to Neutral Axis (dn)

=

{dn}

 

mm

 

Depth of compression block (gammaDn)

=

{gammaDn}

 

mm

 

Flexural strength of longitudinal reinforcement (fsy)  

=

 {fsy}

 

MPa {DEC 0}

 

 

Row No.

Yb (mm)

 No. of bars 

Dp (mm)

Arf (mm2)

Force (kN)

Stress State

Moment (kN.m)

{%i}

{Yrfi} 

{Nrfbrsi}

  {Dprfi}  

  {Arfi}  

  {Fbrfi}  

  {Yeldr$i}  

  {Mbrfi}  

 

 

 

 

  {Arft}  

  {Frf}  

 

  {Mcsr}  

 

 

 

Total area of passive reinforcement (Arft)  

=

  {Arft}

 

mm^2

 

Area of passive reinforcement in tension zone (Arft)  

=

  {Ast}

 

mm^2

 

Area of passive reinforcement in compresn zone (Asc)  

=

  {Asc}

 

mm^2

 

 

 

 

 

 

 

Total tensile force in passive reinforcement (Frf)  

=

  {Frf}

 

kN

 

Moment capacity of reinforcement (Mcsr)

=

  {Mcsr}

   

kN.m {DEC 2}

 

 

 

 

 

 

 

Check for over-reinforcement (Ku)

 

 

 

 

 

   Ku = dn/(1000*Msteel/Fsteel)

=

  {Ku}

   

{KuNote$}

 

 

 

 

 

 

 

Compression force in concrete:

 

 

 

{CalcDcb$}

 

 

 

{DnNote$}

 

 

 

 

 

 

 

Equivalent compressive stress coefficient (Srf)

=

{Srf}

 

{DEC 1}

 

Ultimate concrete compression strength (fuc = Srf*f'cs)

=

{fuc}

 

MPa

 

 

 

 

 

 

 

Moment capacity of concrete (Mc) 

=

  {Mc}

 

kN.m ({McNote$})

 

  For the simplified method:  

 

 

 

 

 

      Mc = - fuc*Ws*dn*dn/(2.*1000) 

 

 

 

 

 

  For the strain compatibility method:

 

 

 

 

 

      Force in slab concrete (Fultcs) 

=

  {Fultcs}

 

kN

 

      Force in flange concrete (Fultcf) 

=

  {Fultcf}

 

kN

 

      Force in web concrete (Fultcw) 

=

  {Fultcw}

 

kN

 

      Moment capacity of slab conc (Multcs) 

=

  {Multcs}

 

kN

 

      Moment capacity of flange conc (Multcf) 

=

  {Multcf}

 

kN

 

      Moment capacity of web conc (Multcw) 

=

  {Multcw}

 

kN

 

 

 

 

 

 

 

Design Ultimate Capacity:

 

 

 

{DEC 0} 

 

 

 

 

 

 

 

Moment cap. of strand + passive RF (Mcs = Mcss+Mcsr)  

=

  {Mcs}

 

kN.m

 

Moment capacity of concrete (Mc)

=

  {Mc}

 

kN.m

 

Ultimate moment capacity of section (Mu = Mcs + Mc)

=

  {Mu}

 

kN.m {DEC 3}

 

 

 

 

 

 

 

Ultimate moment capacity reduction factor (Øm)

=

{Om}

 

(AS5100 Table 2.2) {DEC 0}

 

Design ultimate capacity (ØMu = Øm*Mu)

=

  {OMu}

 

kN.m

 

 

Ultimate Load Factors and Combinations:   (Critical combination number = {ULScombu})

{DEC 1}

 

Combinations

DL

Sec. PS

SDL

Diff.

Shrink.

Residual

Creep

Diff.

Settlemnt

LL

Diff.

Temp.

User

Transient

Include?

1

{LfUDLC1}

{LfUPsC1}

{LfUSDLC1}

{LfUDshC1}

{LfUReCC1}

{LfUDStC1}

{LfULLC1}

{LfUDTeC1}

{LfUUTrC1}

{IncULSC1}

2

{LfUDLC2}

{LfUPsC2}

{LfUSDLC2}

{LfUDshC2}

{LfUReCC2}

{LfUDStC2}

{LfULLC2}

{LfUDTeC2}

{LfUUTrC2}

{IncULSC2}

3

{LfUDLC3}

{LfUPsC3}

{LfUSDLC3}

{LfUDshC3}

{LfUReCC3}

{LfUDStC3}

{LfULLC3}

{LfUDTeC3}

{LfUUTrC3}

{IncULSC3}

4

{LfUDLC4}

{LfUPsC4}

{LfUSDLC4}

{LfUDshC4}

{LfUReCC4}

{LfUDStC4}

{LfULLC4}

{LfUDTeC4}

{LfUUTrC4}

{IncULSC4}

5

{LfUDLC5}

{LfUPsC5}

{LfUSDLC5}

{LfUDshC5}

{LfUReCC5}

{LfUDStC5}

{LfULLC5}

{LfUDTeC5}

{LfUUTrC5}

{IncULSC5}

6

{LfUDLC6}

{LfUPsC6}

{LfUSDLC6}

{LfUDshC6}

{LfUReCC6}

{LfUDStC6}

{LfULLC6}

{LfUDTeC6}

{LfUUTrC6}

{IncULSC6}

Critical Combination

{LfULSDL}

{LfULSPS}

{LfULSSDL}

{LfULSDSh}

{LfULSRcr}

{LfULSDSt}

{LfULSLL}

{LfULSDTe}

{LfULSUTr}

 

 

 

 

Ultimate Loads:  {DEC 0} (Critical combination number = {ULScombu})

{DEC 1}

 

 

 

 

Loading

Moment   (kN.m)

Load Factor

Ult. Moment (kN.m)

Girder self-weight

  {Msw}  

  {LfULSDL}  

  {UMswfact}  

Insitu concrete slab

  {Mslab}  

  {LfULSDL}  

  {UMslafac}  

Superimposed DL  

  {Msdl}  

  {LfULSSDL}  

  {UMSDLfac}  

Design Live Load

  {Mll}  

  {LfULSLL}  

  {UMLLfact}  

Secondary prestress

  {Msecpres}  

  {LfULSPS}  

  {UMPrefac}  

Secondary diff. Shrinkage

  {Mdiffshr}  

  {LfULSDSh}  

  {UMDshfac}  

Secondary residual creep

  {Mrescree}  

  {LfULSRcr}  

  {UMRCrfac}  

Secondary temperature  *

  {Mdifftma}  

  {LfULSDTe}  

  {UMDTmafa}  

Differential settlement

  {Mdiffset}  

  {LfULSDSt}  

  {UMDSefac}  

User transient effects  

  {Musertra}  

  {LfULSUTr}  

  {UMUsTfac}  

Ult Design Moment (Mu1)

 

  {Mu1}  

 

The secondary temperature moment is the maximum of the “Hot Top” and “Cold Top” values

 

 

 

 

 

   

{DEC 0}

 

Ultimate design moment (Mu1)  

=

  {Mu1}

   

kN.m

 

Design ultimate capacity or strength (ØMu)

=

{OMu}

 

kN.m

 

 

 

 

 

 

 

Effective depth for M* offset (Def)

=

{Def}

 

mm (AS5100)

 

 

 

 

 

 

 

Minimum allowable bending strength (Muomin)

=

{Muomin}

 

kN.m

    where  Muomin = 1.2*Mcr

(AS5100 Eqn 8.1.4.1(1))

    and Mcr = Cracking moment (refer to Shear check)

=

{Mcr}

 

kN.m

 

 

 

 

 

 

 

Live Load Moment Capacity Rating

 

 

 

 

 

 

 

 

Moment due to self-weight (Msw)

=

{Msw}

 

kN.m

 

Moment due to slab (Mslab)

=

{Msw}

 

kN.m

 

Moment due to SDL (Msdl)

=

{Msw}

 

kN.m

 

Moment due to LL (Mll)

=

{Mll}

 

kN.m {DEC 1}

 

 

Load Factor on self-weight (LFsw)

=

{LFsw}

 

 

Load Factor on deck slab (LFslab)

=

{LFslab}

 

 

Load Factor on SDL (LFsdl)

=

{LFsdl}

 

 

Load Factor on LL (LFll)

=

{LFll}

 

{DEC 0}

 

 

 

 

 

 

 

Design moment due to self-weight  (Musw = LFsw*Msw)

  =

{Musw}

 

kN.m

 

Design moment due to slab  (Muslab = LFslab*Mslab)

=

{Muslab}

 

kN.m

 

Design moment due to SDL  (Musdl = LFsdl*Msdl)

=

{Musdl}

 

kN.m

 

Design moment due to live load (Mull = LFll*Mll)

=

{Mull}

 

kN.m

 

 

 

 

 

 

 

Residual Live Load Capacity

=

 {Mllcap}

 

kN.m {DEC 1}

         (Mllcap = ØMu-Musw-Muslab-Musdl)

 

 

 

 

 

 

 

Live Load Capacity Rating:  (Muratll = Mllcap/Mull)

=

{Muratll}