ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}  ({SecName\$})

 Distance (x) of section from the first node = {x}  mm Strand segment number:  {SectSSeg} Passive R/F segment number:  {SectPSeg}

ULTIMATE MOMENT CHECK  {DEC 0}

 Strand data: Ultimate breaking force of PS strand (Pult) = {Pult} kN Ult breaking stress of PS strand (fp = 1000*Pult/Aps) = {fp} MPa Total area of bonded prestressing strands    (Ap) = {Ap} mm^2 Distance of CG strand group from bottom of girder (Ycgs) = {Ycgs} mm Distance of CG strand group to top of sectn (Dp=D-Ycgs) = {Dp} mm Strand rupture stress  (fpus) = {fpus} MPa  {DEC 4} Strand rupture strain  (epus) = {epus} Strand yield strain  (epy) = {epy} Strand yield strain factor  (epyf) = {epyf} {DEC 0} Yield stress of strand   (fpy) = {fpy} MPa Section data: Overall depth of composite section (D) = {D} mm Actual width of insitu slab (Ws) = {Ws} mm Effective slab width for moment (bef) = {bef} mm  {DEC 1} Web inclination angle (ThetaWeb) = {ThetaWeb} Degrees Concrete strength of deck slab (f'cs) = {f'cs} MPa {DEC 0} Passive reinforcement data: Area of longitudinal reinforcement in tensile zone  (Ast) = {Ast} mm^2 Area of longitudinal compressive reinforcement (Asc) = {Asc} mm^2 {DEC 0} Yield strength of longitudinal reinforcement (fsy) = {fsy} MPa {DEC 0} Young's Modulus of longitudinal reinforcement (Esr) = {Esr} MPa {DEC 3} Factors & coefficients: Equivalent compressive stress coefficient (Srf) = {Srf} (AS5100 Section 8.1.2.2) Ultimate tendon stress coefficient (k1u) = {k1u} (AS5100 Section 8.1.5) Ultimate tendon stress coefficient (k2u) is given by: k2u = (Ap*fp+(Ast-Asc)*fsy)/(Ws*Dp*f'cs) = {k2u} (AS5100 Section 8.1.5) Neutral axis depth parameter (Gamma = v) where v = Srf - 0.007*(f'cs - 28) = {v} (AS5100 Section 8.1.2.2) Forces in prestressing strand: {DEC 3} {CalcDcb\$} {DnNote\$} Concrete strain at ultimate (ucu) = {ucu} {DEC 1} Depth to Neutral Axis (dn) = {dn} mm Depth of compression block (gammaDn = v*dn) = {gammaDn} mm Overall depth of composite section (D) = {D} mm Ultimate strand design strength (fpu = fp*(1 - k1u*k2u/v)) = {fpu} MPa (AS5100 Section 8.1.5) Area of a single strand (Aps) = {Aps} mm^2 {DEC 0}

 Row No. Yb (mm) No. bonded strands Dp (mm) Ap (mm2) Force (kN) Stress State Moment (kN.m) {%i} {Ybarri} {Nbarbi} {Dpbari} {Apbari} {Fbari} {Yelds\$i} {Mbari} {Apt} {Fps} {Mcss}

 Where for each row of strands: Dp = D – Yb  (Yb is the distance of the strand from the bottom of the girder) Ap = No bonded strands*Aps Force = Ap*fpu/1000 Total tensile force in PS strands (Fps) = {Fps} kN Moment capacity of PS strands (Mcss) = {Mcss} kN.m {DEC 3} Forces in passive reinforcement: Concrete strain at ultimate (ucu) = {ucu} {DEC 1} Depth to Neutral Axis (dn) = {dn} mm Depth of compression block (gammaDn) = {gammaDn} mm Flexural strength of longitudinal reinforcement (fsy) = {fsy} MPa {DEC 0}

 Row No. Yb (mm) No. of bars Dp (mm) Arf (mm2) Force (kN) Stress State Moment (kN.m) {%i} {Yrfi} {Nrfbrsi} {Dprfi} {Arfi} {Fbrfi} {Yeldr\$i} {Mbrfi} {Arft} {Frf} {Mcsr}

 Total area of passive reinforcement (Arft) = {Arft} mm^2 Area of passive reinforcement in tension zone (Arft) = {Ast} mm^2 Area of passive reinforcement in compresn zone (Asc) = {Asc} mm^2 Total tensile force in passive reinforcement (Frf) = {Frf} kN Moment capacity of reinforcement (Mcsr) = {Mcsr} kN.m {DEC 2} Check for over-reinforcement (Ku) Ku = dn/(1000*Msteel/Fsteel) = {Ku} {KuNote\$} Compression force in concrete: {CalcDcb\$} {DnNote\$} Equivalent compressive stress coefficient (Srf) = {Srf} {DEC 1} Ultimate concrete compression strength (fuc = Srf*f'cs) = {fuc} MPa Moment capacity of concrete (Mc) = {Mc} kN.m ({McNote\$}) For the simplified method: Mc = - fuc*Ws*dn*dn/(2.*1000) For the strain compatibility method: Force in slab concrete (Fultcs) = {Fultcs} kN Force in flange concrete (Fultcf) = {Fultcf} kN Force in web concrete (Fultcw) = {Fultcw} kN Moment capacity of slab conc (Multcs) = {Multcs} kN Moment capacity of flange conc (Multcf) = {Multcf} kN Moment capacity of web conc (Multcw) = {Multcw} kN Design Ultimate Capacity: {DEC 0} Moment cap. of strand + passive RF (Mcs = Mcss+Mcsr) = {Mcs} kN.m Moment capacity of concrete (Mc) = {Mc} kN.m Ultimate moment capacity of section (Mu = Mcs + Mc) = {Mu} kN.m {DEC 3} Ultimate moment capacity reduction factor (Øm) = {Om} (AS5100 Table 2.2) {DEC 0} Design ultimate capacity (ØMu = Øm*Mu) = {OMu} kN.m

 Ultimate Load Factors and Combinations:   (Critical combination number = {ULScombu}) {DEC 1}

 Combinations DL Sec. PS SDL Diff. Shrink. Residual Creep Diff. Settlemnt LL Diff. Temp. User Transient Include? 1 {LfUDLC1} {LfUPsC1} {LfUSDLC1} {LfUDshC1} {LfUReCC1} {LfUDStC1} {LfULLC1} {LfUDTeC1} {LfUUTrC1} {IncULSC1} 2 {LfUDLC2} {LfUPsC2} {LfUSDLC2} {LfUDshC2} {LfUReCC2} {LfUDStC2} {LfULLC2} {LfUDTeC2} {LfUUTrC2} {IncULSC2} 3 {LfUDLC3} {LfUPsC3} {LfUSDLC3} {LfUDshC3} {LfUReCC3} {LfUDStC3} {LfULLC3} {LfUDTeC3} {LfUUTrC3} {IncULSC3} 4 {LfUDLC4} {LfUPsC4} {LfUSDLC4} {LfUDshC4} {LfUReCC4} {LfUDStC4} {LfULLC4} {LfUDTeC4} {LfUUTrC4} {IncULSC4} 5 {LfUDLC5} {LfUPsC5} {LfUSDLC5} {LfUDshC5} {LfUReCC5} {LfUDStC5} {LfULLC5} {LfUDTeC5} {LfUUTrC5} {IncULSC5} 6 {LfUDLC6} {LfUPsC6} {LfUSDLC6} {LfUDshC6} {LfUReCC6} {LfUDStC6} {LfULLC6} {LfUDTeC6} {LfUUTrC6} {IncULSC6} Critical Combination {LfULSDL} {LfULSPS} {LfULSSDL} {LfULSDSh} {LfULSRcr} {LfULSDSt} {LfULSLL} {LfULSDTe} {LfULSUTr}

 Ultimate Loads:  {DEC 0} (Critical combination number = {ULScombu}) {DEC 1}

 Loading Moment   (kN.m) Load Factor Ult. Moment (kN.m) Girder self-weight {Msw} {LfULSDL} {UMswfact} Insitu concrete slab {Mslab} {LfULSDL} {UMslafac} Superimposed DL {Msdl} {LfULSSDL} {UMSDLfac} Design Live Load {Mll} {LfULSLL} {UMLLfact} Secondary prestress {Msecpres} {LfULSPS} {UMPrefac} Secondary diff. Shrinkage {Mdiffshr} {LfULSDSh} {UMDshfac} Secondary residual creep {Mrescree} {LfULSRcr} {UMRCrfac} Secondary temperature  * {Mdifftma} {LfULSDTe} {UMDTmafa} Differential settlement {Mdiffset} {LfULSDSt} {UMDSefac} User transient effects {Musertra} {LfULSUTr} {UMUsTfac} Ult Design Moment (Mu1) {Mu1}

The secondary temperature moment is the maximum of the “Hot Top” and “Cold Top” values

 {DEC 0} Ultimate design moment (Mu1) = {Mu1} kN.m Design ultimate capacity or strength (ØMu) = {OMu} kN.m Effective depth for M* offset (Def) = {Def} mm (AS5100) Minimum allowable bending strength (Muomin) = {Muomin} kN.m where  Muomin = 1.2*Mcr (AS5100 Eqn 8.1.4.1(1)) and Mcr = Cracking moment (refer to Shear check) = {Mcr} kN.m Live Load Moment Capacity Rating Moment due to self-weight (Msw) = {Msw} kN.m Moment due to slab (Mslab) = {Msw} kN.m Moment due to SDL (Msdl) = {Msw} kN.m Moment due to LL (Mll) = {Mll} kN.m {DEC 1} Load Factor on self-weight (LFsw) = {LFsw} Load Factor on deck slab (LFslab) = {LFslab} Load Factor on SDL (LFsdl) = {LFsdl} Load Factor on LL (LFll) = {LFll} {DEC 0} Design moment due to self-weight  (Musw = LFsw*Msw) = {Musw} kN.m Design moment due to slab  (Muslab = LFslab*Mslab) = {Muslab} kN.m Design moment due to SDL  (Musdl = LFsdl*Msdl) = {Musdl} kN.m Design moment due to live load (Mull = LFll*Mll) = {Mull} kN.m Residual Live Load Capacity = {Mllcap} kN.m {DEC 1} (Mllcap = ØMu-Musw-Muslab-Musdl) Live Load Capacity Rating:  (Muratll = Mllcap/Mull) = {Muratll}