ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

{DEC 0} SECTION:   {Sectnum}

 

Distance (x) of section from the first node = {x}  mm

 

   

 

 

 

 

 

 

 

Strand segment number:  {SectSSeg}

 

 

 

 

Passive R/F segment number:  {SectPSeg}

 

 

 

SERVICEABILITY CHECK {DEC 0}

 

Area of girder (Ag)  

=

{Ag}

   

mm^2

 

Eccentricity of CG strands from CG girder (e)

=

{e}

 

mm {EXP 4}

 

 

 

 

 

 

 

Section modulus of girder - top       (Zt)

=

{Zt}

 

mm^3

 

Section modulus of girder - bottom (Zb)

=

{Zb}

 

mm^3

 

 

 

 

 

 

 

Section modulus of composite girder - slab top    (Zst)

=

 {Zst}

 

mm^3

 

Section modulus of composite girder - slab bot    (Zsb)

=

{Zsb}

 

mm^3

 

Section modulus of composite girder - girder top (Zgt)

=

{Zgt}

 

mm^3

 

Section modulus of composite girder - girder bot (Zgb)  

=

{Zgb}

 

mm^3 {DEC 0}

 

 

 

 

 

 

 

Prestress force at transfer (Pt)

=

{Pt}

 

kN

 

Moment due to PS force at transfer (Mpte = - Pt*e/1000)

=

{Mpte}

 

kN.m

 

Moment due to self-weight of girder (Msw)  

=

{Msw}

 

kN.m

 

 

 

 

 

 

 

Girder stresses at transfer: (Tension = +ve)

 

 

 

{DEC 2}

 

 

 

 

 

 

 

Stress at top of girder due to PS force (= -Pt*1000/Ag)

=

{fgt1}

 

MPa (= stress at bottom of girder)

 

Stress at top of girder due to PS eccentricity (-Mpte*E6/Zt)

=

{fgt2}

 

MPa

 

Stress at bot of girder due to PS eccentricity (Mpte*E6/Zb)

=

{fgb2}

 

MPa

 

Stress at top of girder due to girder selfwt (-Msw*E6/Zt)

=

{fgt3}

 

MPa

 

Stress at bot of girder due to girder selfwt (Msw*E6/Zb)

=

{fgb3}

 

MPa

 

 

 

 

 

 

 

Stress at top of girder at transfer (= fgt1+fgt2+fgt3)

=

{fgt4}

 

MPa

 

Stress at bot of girder at transfer (= fgb1+fgb2+fgb3)

=

{fgb4}

 

MPa

 

 

 

 

 

 

 

Allowable girder tension stress at transfer (f'cmt)

=

{f'cmt}

 

MPa ({CODE} Section 8.6.2)

 

Allowable slab concrete tension stress at transfer (f'csat)

=

{f'csat}

 

MPa ({CODE} Section 8.6.2)

 

    (f'csat = 0.5*f'cmt^0.5)

 

 

 

 

 

Allowable concrete compression stress at transfer (f'csac)

=

  -{f'csac}

 

MPa ({CODE} Section 8.6.2)

 

    (f'csac = 0.6*f'cmt) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{DEC 0} 

 

Final design stresses: (Tension = +ve)

 

 

 

 

 

 

 

 

 

 

 

Final design prestress force (P)

=

{P}

 

kN {DEC 2}

 

Superimposed dead load factor (SDLf)

=

{SDLf}

 

(AS5100.2 Section 5.3)

 

 

 

 

 

 

 

Axial stress at top girder due to PS force (- P*1000/Ag)

=

{fgtss1}

 

MPa

 

Axial stress at bot girder due to PS force (= top stress)

=

{fgbss1}

 

MPa {DEC 0}

 

 

 

 

 

 

 

Moment due to eccentricity of PS force (Mpe = -P*e/1000)  

=

{Mpe}

 

kN.m {DEC 2}

 

 

 

 

 

 

 

Basis of stress calculations:

 

 

 

 

 

 

 

 

 

 

 

Stresses due to prestress, self-weight and superimposed dead loads are calculated using girder moduli Zt and Zb viz:

 

fgt = -M*10^6/Zt and fgb = M*10^6/Zb where M represents the relevant moment

 

 

 

 

 

 

 

Stresses due to hotmix, live load and special vehicle loads are calculated using girder moduli of the composite section viz:

 

fst = -M*10^6/Zst; fsb = -M*10^6/Zsb; fgt = -M*10^6/Zgt; fgb = M*10^6/Zgb

 

 

 

 

 

 

 

For the case of superimposed dead loads (bitumen/hotmix) the stresses are multiplied by the factor SDLf.

 

Shrinkage stresses are obtained from the 'Loadings' tab (ftempst, ftempsb, ftempgt, ftempgb)

 

 

 

 

 

 

 

Summary of final stresses

 

 

 

 

 

Loading

Value (kN,kN.m)

Slab Top (MPa)

Slab Bottom (MPa)

Girder Top (MPa)

Girder Bottom (MPa)

 

1

Final prestress force  (P)

{P} 

 

 

{fgtss1} 

{fgbss1} 

 

Prestress eccentricity (Mpe)

{Mpe} 

 

 

{fgtss2} 

{fgbss2} 

 

Girder self-weight (Msw)

{Msw} 

 

 

{fgtss3} 

{fgbss3} 

 

Insitu deck slab (Mslab)

{Mslab} 

 

 

{fgtss4} 

{fgbss4} 

 

Superimposed dead load (Msdl)

{Msdl} 

{fstss5} 

{fsbss5} 

{fgtss5} 

{fgbss5} 

 

6

Differential shrinkage (Mshr) 

{Mshr} 

{fstss6} 

{fsbss6} 

{fgtss6} 

{fgbss6} 

 

7

Temp. stresses (ftemp..) 

 

{ftempst} 

{ftempsb} 

{ftempgt} 

{ftempgb} 

 

8

Design live load (Mll)

{Mll} 

{fstss7} 

{fsbss7} 

{fgtss7} 

{fgbss7} 

 

9

Special vehicle (Mhvl)

{Mhvl} 

{fstss8} 

{fsbss8} 

{fgtss8} 

{fgbss8} 

 

 Total stress: DL+Design Live Load

 {fstll}  

 {fsbll}  

{fgtll}  

{fgbll} 

 

 Total stress: DL+Special Vehicle Load

 {fstsv}  

 {fsbsv}  

{fgtsv}  

{fgbsv} 

 

    

 

Tension = (+)ve     Compression = (-)ve

    

28 day concrete compressive strength of girder (fcg)  

=

  {f`cg}

 

MPa  

 

Allowable concrete tension stress for LL (f'at = 0.25f'cg^0.5)  

=

{f'at}

  

MPa   ({CODE} Clause 8.6.2)

 

Allowable concrete comprn stress for LL (f'ac = 0.4*f'cg)  

=

  -{f'ac}

 

MPa   ({CODE} Clause 8.1.4.2)

 

Allowable concrete tension stress for SVL (f'atsv = 0.5f'cg^0.5)  

=

{f'atsv}

  

MPa   ({CODE} Clause 8.6.2)

Allowable concrete comprn stress for SVL (f'acsv = 0.6*f'cg)  

=

  -{f'acsv}

 

MPa   ({CODE} Clause 8.1.4.2)

 

 

 

 

 

 

 

Check for Cracking Using Strain Compatibility Analysis

 

 

 

{DEC 1}

 

{SLScase$}

 

Allowable cracking stress increment (fcrack)

=

  {fcrack}

 

MPa  (AS3600 Clause 8.6.1)

Force per strand for SLS (Fperstnd)

=

{Fperstnd}

kN

 

Precast Girder (Self-weight + Deck slab)

 

 

 

 

 

 

 

Shrinkage strain just before girder is made composite (u5)

=

  {u5}

 

microstrain  

 

 

Moment due to self-weight + deck (Mpcdlsla = Msw + Mslab)

=

  {Mpcdlsla}

 

kN.m

 

Cracking (decompression) moment (Mpccrack)

=

  {Mpccrack}

 

kN.m

Increment in moment (Mpcincr)

=

  {Mpcincr}

 

kN.m

 

 

 

 

 

 

 

Initial cracking strain at top of precast beam (upccrtop)  

=

  {upccrtop}

 

microstrain  

 

Initial cracking strain at bottom of precast beam (upccrbot)  

=

  {upccrbot}

 

microstrain  

 

Final cracking strain at top due to s/w + deck (upcdltop)  

=

  {upcdltop}

 

microstrain  

Final cracking strain at bottom due to s/w + deck (upcdlbot)  

=

  {upcdlbot}

 

microstrain  

 

Depth to the neutral axis (dnapc)

=

  {dnapc}

 

mm {EXP 4}

Curvature of girder (curvpc)

=

  {curvpc}

 

{DEC 1}

 

 

 

 

 

 

 

 

Composite Girder (Self-weight + Deck slab + SDL + LL)

 

 

 

 

 

 

 

Extra shrinkage strain after gird. has been made composite (u6)

=

  {u6}

 

microstrain  

  (This is added to the composite strain values for the

  concrete in the precast zone)

Shrinkage strain in insitu slab (u2)

=

  {u2}

 

microstrain  

   (This is added to the composite strain values for the

    concrete in the slab zone)

 

 

 

Design moment due to DL + LL (Mcodesig)

=

  {Mcodesig}

 

kN.m

 

Cracking (decompression) moment (Mcocrack)

=

  {Mcocrack}

 

kN.m

 

Increment in moment (Mcoincr)

=

  {Mcoincr}

 

kN.m

 

 

{MslNote$}

 

 

 

 

 

 

 

Initial cracking strain at top of composite girder (ucocrtop)  

=

  {ucocrtop}

 

microstrain  

 

Initial cracking strain at bottom of composite girder (ucocrbot)  

=

  {ucocrbot}

 

microstrain  

 

 

 

Final cracking strain at top of composite girder (ucodltop)  

=

  {ucodltop}

 

microstrain  

 

Final cracking strain at bottom of composite girder (ucodlbot)  

=

  {ucodlbot}

 

microstrain  

 

 

 

Depth to the neutral axis (dncomp)

=

  {dnacomp}

 

mm {EXP 4}

 

Curvature of girder (curvco)

=

  {curvco}

 

{DEC 1}

 

 

 

 

 

 

Calculated stress increment (fslscrck)

=

  {fslscrck}

 

MPa  

 

Allowable cracking stress increment (fcrack)

=

  {fcrack}

 

MPa  (AS3600 Clause 8.6.1)

 

 

 

 

 

 

 

 

 

 

 

{CrkNote$} 

 

 CRACK CHECK SUMMARY

 

Serviceability Limit

State

Precast Summary

Composite Summary

Moment

(kN.m)

Strand

Stress

Reinforcement

Stress

 

Moment

(kN.m)

Strand

Stress

Reinforcement

Stress

Decompression State

{Mpccrack}

{fpccrps}

{fpccrre}

 

{Mcocrack}

{fcocrps}

{fcocrre}

Design State

{Mpcdlsla}

{fpcdlps}

{fpcdlreo}

 

{Mcodesig}

{fcodlps}

{fcodlreo}

Increment

{Mpcincr}

{fpcincps}

{fpcincre}

 

{Mcoincr}

{fcoincps}

{fcoincre}

 

 

 

 

 

 

 

 {DEC 0}

 

Fatigue Check ({CODE} Clause 2.5)

 

 

 

 

Number of vehicles per lane per day (NumVftge)

=

  {NumVftge}

 

(Default = 40,000)

Route factor for fatigue check (Rfactor)

=

{Rfactor}

(Default = 1) {DEC 1}

 

 

 

 

 

 

 

Fatigue factor (FtgeFact)

=

  {FtgeFact}

 

{EXP 1}

 

  (If Rfactor = 1,   FtgeFact = 1;   If  Rfactor =2,  FtgeFact = 0.7)

 

  (If Rfactor = 3,  FtgeFact = 0.5; If Rfactor = 4,  FtgeFact = 0.3)

 

 

 

 

 

 

 

Number of design fatigue cycles (Ncycftge)  

=

{Ncycftge}

 

{DEC 0}

 

 (Ncycftge = NumVftge*20000*FtgeFact/Span^0.5)

 

If  Ncycftge < 500,000 fatigue check not required for road bridges

 

  

 

{Ftgeck$}

 

 

Maximum permissible fatigue stress range in PS strand (fftgeps)

=

  {fftgeps}

 

Mpa

Maximum permissible fatigue stress range in passive R/F (fftgere)

=

  {fftgere}

 

Mpa

 

 

 

 

 

{DEC 2}

28 day concrete compressive strength of slab (fcs)

=

  {f`cs}

 

MPa  

 

Max permitted fatigue compressive stress (fcftge = -0.45*fcs)

=

  {f`cftge}

 

MPa  

  (fcftge must not exceed -18 MPa)

 

Calculate allowable shear in web

 

({CODE} Clause 2.5.3)

   (based on compressive strength of concrete)

 

 

 

 

 

 

 

28 day concrete compressive strength of girder (fcg)  

=

  {f`cg}

 

MPa  {DEC 1}

 

Sum of the widths of both webs (Bw2)  

=

  {Bw2}

 

mm  

 

Distance from the far compressive fibre to the outer tensile RF (do)  

=

  {do}

 

mm  

 

Distance from the web/flange interface to composite centroid (y2)  

=

  {y2}

 

mm  

 

Post-tensioning force (Pv)  

=

  {Pv}

 

kN  {DEC 0}

 

 

 

LL shear due to fatigue  (e.g., 0.7*SM1600 excl UDL) (Vftge)  

=

  {Vftge}

 

kN  

 

Shear force due to self-weight of girder (Vsw)  

=

  {Vsw}

 

kN  

 

Shear force due to dead load of insitu concrete slab (Vslab)

=

  {Vslab}

 

kN  

 

Superimposed dead load shear (Vsdl)

=

  {Vsdl}

 

kN  

 

 

Maximum allowable fatigue shear (Vucftge)

=

  {Vucftge}

 

kN

 

  (Vucftge = 0.6 * [0.2*fcg*Bw2*do/1000 + Pv])

 

 

 

 

 

 

 

Design Live Load shear due to fatigue (Vfatigue)  

=

  {Vfatigue}

 

kN  {DEC 1}

 

  (Vfatigue = Vftge + Vsw + Vslab + Vsdl) 

 

Height to composite centroid (Yc)

=

  {Yc}

mm

Height to web/flange joint (Dwf)

=

  {Dwf}

mm

Dist from web/flange to composite centroid  (y2 = Yc Dwf

=

  {y2}

mm {EXP 4}

Section modulus - slab top  (Zst) 

=

  {Zst}

mm^3

Composite moment of inertia (Ic)

=

  {Ic}

mm^4 {DEC 0}

 

 

LL moment due to fatigue  (e.g., 0.7*SM1600 excl UDL) (Mftge)

=

  {Mftge}

 

kN.m  

 

Bending moment due to self-weight of girder (Msw)  

=

  {Msw}

 

kN.m  

 

Bending moment due to dead load of insitu concrete slab (Mslab)

=

  {Mslab}

 

kN.m

 

Bending moment due to superimposed dead load (Msdl)

=

  {Msdl}

 

kN.m

 

Design Live Load moment due to fatigue (Mfatigue)

=

  {Mfatigue}

 

kN.m  {DEC 2}

 

  (Mfatigue = Mftge + Msw + Mslab + Msdl)

 

 

 

 

 

Max fatigue compressive stress in deck (fcslabf = -Mfatigue*10^6/Zst)

=

  {fcslabf}

 

MPa  

Max fatigue compressive stress in web  (fcwebf = -Mfatigue*y2*10^6/Ic)  

=

  {fcwebf}

 

MPa  {DEC 1}

 

Calculate stress range in steel prestressing strand

 

Maximum distance of strand from composite centroid (Ybarrmax)

=

  {Ybarrmax}

mm

  (Loop through all strands and check if Ybarrmax > Yc Ystrand)

 

Maximum stress range in prestressing steel (fsrangps)

=

  {fsrangps}

 

MPa  

  (If Ybarrmax > 1 then fsrangps = Mftge*10^6*Ybarrmax / Ic  

   else  fsrangps = 0)

 

Calculate stress range in passive steel reinforcement

 

Maximum distance of R/F bar from composite centroid (Yrfmmax)

=

  {Yrfmmax}

mm

  (Loop through all strands and check if Yrfmmax > Yc Yrf)

 

Maximum stress range in passive steel R/F (fsrangre)

=

  {fsrangre}

 

MPa  

  (If Yrfmmax > 1 then fsrangre = Mftge*10^6*Yrfmmax / Ic  

   else  fsrangre = 0)

 

Check calculated shears and stresses against allowable values

 

Calculated fatigue compressive stress in deck (fcslabf)

=

  {fcslabf}

 

MPa  

Calculated fatigue compressive stress in web  (fcwebf)  

=

  {fcwebf}

 

MPa  

Maximum permitted fatigue compressive stress (fcftge)

=

  {f`cftge}

 

MPa  

 

Calculated stress range in prestressing steel (fsrangps)

=

  {fsrangps}

 

MPa  

Maximum permissible fatigue stress range in PS strand (fftgeps)

=

  {fftgeps}

 

Mpa

 

Calculated stress range in passive steel R/F (fsrangre)

=

  {fsrangre}

 

MPa  

Maximum permissible fatigue stress range in passive R/F (fftgere)

=

  {fftgere}

 

Mpa

 

 

Calculated design Live Load shear due to fatigue (Vfatigue)  

=

  {Vfatigue}

 

kN  

 

Maximum allowable fatigue shear (Vucftge)

=

  {Vucftge}

 

kN

 

 

On the basis of the above calculated and allowable values: 

 

 

 

{FtgeOK$}