ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

{DEC 0} SECTION:   {Sectnum}

 Distance (x) of section from the first node = {x}  mm Strand segment number:  {SectSSeg} Passive R/F segment number:  {SectPSeg}

SERVICEABILITY CHECK {DEC 0}

 Area of girder (Ag) = {Ag} mm^2 Eccentricity of CG strands from CG girder (e) = {e} mm {EXP 4} Section modulus of girder - top       (Zt) = {Zt} mm^3 Section modulus of girder - bottom (Zb) = {Zb} mm^3 Section modulus of composite girder - slab top    (Zst) = {Zst} mm^3 Section modulus of composite girder - slab bot    (Zsb) = {Zsb} mm^3 Section modulus of composite girder - girder top (Zgt) = {Zgt} mm^3 Section modulus of composite girder - girder bot (Zgb) = {Zgb} mm^3 {DEC 0} Prestress force at transfer (Pt) = {Pt} kN Moment due to PS force at transfer (Mpte = - Pt*e/1000) = {Mpte} kN.m Moment due to self-weight of girder (Msw) = {Msw} kN.m Girder stresses at transfer: (Tension = +ve) {DEC 2} Stress at top of girder due to PS force (= -Pt*1000/Ag) = {fgt1} MPa (= stress at bottom of girder) Stress at top of girder due to PS eccentricity (-Mpte*E6/Zt) = {fgt2} MPa Stress at bot of girder due to PS eccentricity (Mpte*E6/Zb) = {fgb2} MPa Stress at top of girder due to girder selfwt (-Msw*E6/Zt) = {fgt3} MPa Stress at bot of girder due to girder selfwt (Msw*E6/Zb) = {fgb3} MPa Stress at top of girder at transfer (= fgt1+fgt2+fgt3) = {fgt4} MPa Stress at bot of girder at transfer (= fgb1+fgb2+fgb3) = {fgb4} MPa Allowable girder tension stress at transfer (f'cmt) = {f'cmt} MPa ({CODE} Section 8.6.2) Allowable slab concrete tension stress at transfer (f'csat) = {f'csat} MPa ({CODE} Section 8.6.2) (f'csat = 0.5*f'cmt^0.5) Allowable concrete compression stress at transfer (f'csac) = -{f'csac} MPa ({CODE} Section 8.6.2) (f'csac = 0.6*f'cmt) {DEC 0} Final design stresses: (Tension = +ve) Final design prestress force (P) = {P} kN {DEC 2} Superimposed dead load factor (SDLf) = {SDLf} (AS5100.2 Section 5.3) Axial stress at top girder due to PS force (- P*1000/Ag) = {fgtss1} MPa Axial stress at bot girder due to PS force (= top stress) = {fgbss1} MPa {DEC 0} Moment due to eccentricity of PS force (Mpe = -P*e/1000) = {Mpe} kN.m {DEC 2} Basis of stress calculations: Stresses due to prestress, self-weight and superimposed dead loads are calculated using girder moduli Zt and Zb viz: fgt = -M*10^6/Zt and fgb = M*10^6/Zb where M represents the relevant moment Stresses due to hotmix, live load and special vehicle loads are calculated using girder moduli of the composite section viz: fst = -M*10^6/Zst; fsb = -M*10^6/Zsb; fgt = -M*10^6/Zgt; fgb = M*10^6/Zgb For the case of superimposed dead loads (bitumen/hotmix) the stresses are multiplied by the factor SDLf. Shrinkage stresses are obtained from the 'Loadings' tab (ftempst, ftempsb, ftempgt, ftempgb) Summary of final stresses Loading Value (kN,kN.m) Slab Top (MPa) Slab Bottom (MPa) Girder Top (MPa) Girder Bottom (MPa) 1 Final prestress force  (P) {P} {fgtss1} {fgbss1} 2 Prestress eccentricity (Mpe) {Mpe} {fgtss2} {fgbss2} 3 Girder self-weight (Msw) {Msw} {fgtss3} {fgbss3} 4 Insitu deck slab (Mslab) {Mslab} {fgtss4} {fgbss4} 5 Superimposed dead load (Msdl) {Msdl} {fstss5} {fsbss5} {fgtss5} {fgbss5} 6 Differential shrinkage (Mshr) {Mshr} {fstss6} {fsbss6} {fgtss6} {fgbss6} 7 Temp. stresses (ftemp..) {ftempst} {ftempsb} {ftempgt} {ftempgb} 8 Design live load (Mll) {Mll} {fstss7} {fsbss7} {fgtss7} {fgbss7} 9 Special vehicle (Mhvl) {Mhvl} {fstss8} {fsbss8} {fgtss8} {fgbss8} Total stress: DL+Design Live Load {fstll} {fsbll} {fgtll} {fgbll} Total stress: DL+Special Vehicle Load {fstsv} {fsbsv} {fgtsv} {fgbsv}

 Tension = (+)ve     Compression = (-)ve

 28 day concrete compressive strength of girder (f’cg) = {f`cg} MPa Allowable concrete tension stress for LL (f'at = 0.25f'cg^0.5) = {f'at} MPa   ({CODE} Clause 8.6.2) Allowable concrete comprn stress for LL (f'ac = 0.4*f'cg) = -{f'ac} MPa   ({CODE} Clause 8.1.4.2) Allowable concrete tension stress for SVL (f'atsv = 0.5f'cg^0.5) = {f'atsv} MPa   ({CODE} Clause 8.6.2) Allowable concrete comprn stress for SVL (f'acsv = 0.6*f'cg) = -{f'acsv} MPa   ({CODE} Clause 8.1.4.2) Check for Cracking Using Strain Compatibility Analysis {DEC 1} {SLScase\$} Allowable cracking stress increment (fcrack) = {fcrack} MPa  (AS3600 Clause 8.6.1) Force per strand for SLS (Fperstnd) = {Fperstnd} kN Precast Girder (Self-weight + Deck slab) Shrinkage strain just before girder is made composite (u5) = {u5} microstrain Moment due to self-weight + deck (Mpcdlsla = Msw + Mslab) = {Mpcdlsla} kN.m Cracking (decompression) moment (Mpccrack) = {Mpccrack} kN.m Increment in moment (Mpcincr) = {Mpcincr} kN.m Initial cracking strain at top of precast beam (upccrtop) = {upccrtop} microstrain Initial cracking strain at bottom of precast beam (upccrbot) = {upccrbot} microstrain Final cracking strain at top due to s/w + deck (upcdltop) = {upcdltop} microstrain Final cracking strain at bottom due to s/w + deck (upcdlbot) = {upcdlbot} microstrain Depth to the neutral axis (dnapc) = {dnapc} mm {EXP 4} Curvature of girder (curvpc) = {curvpc} {DEC 1} Composite Girder (Self-weight + Deck slab + SDL + LL) Extra shrinkage strain after gird. has been made composite (u6) = {u6} microstrain (This is added to the composite strain values for the concrete in the precast zone) Shrinkage strain in insitu slab (u2) = {u2} microstrain (This is added to the composite strain values for the concrete in the slab zone) Design moment due to DL + LL (Mcodesig) = {Mcodesig} kN.m Cracking (decompression) moment (Mcocrack) = {Mcocrack} kN.m Increment in moment (Mcoincr) = {Mcoincr} kN.m {MslNote\$} Initial cracking strain at top of composite girder (ucocrtop) = {ucocrtop} microstrain Initial cracking strain at bottom of composite girder (ucocrbot) = {ucocrbot} microstrain Final cracking strain at top of composite girder (ucodltop) = {ucodltop} microstrain Final cracking strain at bottom of composite girder (ucodlbot) = {ucodlbot} microstrain Depth to the neutral axis (dncomp) = {dnacomp} mm {EXP 4} Curvature of girder (curvco) = {curvco} {DEC 1} Calculated stress increment (fslscrck) = {fslscrck} MPa Allowable cracking stress increment (fcrack) = {fcrack} MPa  (AS3600 Clause 8.6.1) {CrkNote\$}

CRACK CHECK SUMMARY

 Serviceability Limit State Precast Summary Composite Summary Moment (kN.m) Strand Stress Reinforcement Stress Moment (kN.m) Strand Stress Reinforcement Stress Decompression State {Mpccrack} {fpccrps} {fpccrre} {Mcocrack} {fcocrps} {fcocrre} Design State {Mpcdlsla} {fpcdlps} {fpcdlreo} {Mcodesig} {fcodlps} {fcodlreo} Increment {Mpcincr} {fpcincps} {fpcincre} {Mcoincr} {fcoincps} {fcoincre}

 {DEC 0} Fatigue Check   ({CODE} Clause 2.5) Number of vehicles per lane per day (NumVftge) = {NumVftge} (Default = 40,000) Route factor for fatigue check (Rfactor) = {Rfactor} (Default = 1) {DEC 1} Fatigue factor (FtgeFact) = {FtgeFact} {EXP 1} (If Rfactor = 1,   FtgeFact = 1;   If  Rfactor =2,  FtgeFact = 0.7) (If Rfactor = 3,  FtgeFact = 0.5; If Rfactor = 4,  FtgeFact = 0.3) Number of design fatigue cycles (Ncycftge) = {Ncycftge} {DEC 0} (Ncycftge = NumVftge*20000*FtgeFact/Span^0.5) If  Ncycftge < 500,000 fatigue check not required for road bridges {Ftgeck\$} Maximum permissible fatigue stress range in PS strand (fftgeps) = {fftgeps} Mpa Maximum permissible fatigue stress range in passive R/F (fftgere) = {fftgere} Mpa {DEC 2} 28 day concrete compressive strength of slab (f’cs) = {f`cs} MPa Max permitted fatigue compressive stress (f’cftge = -0.45*f’cs) = {f`cftge} MPa (f’cftge must not exceed -18 MPa) Calculate allowable shear in web ({CODE} Clause 2.5.3) (based on compressive strength of concrete) 28 day concrete compressive strength of girder (f’cg) = {f`cg} MPa  {DEC 1} Sum of the widths of both webs (Bw2) = {Bw2} mm Distance from the far compressive fibre to the outer tensile RF (do) = {do} mm Distance from the web/flange interface to composite centroid (y2) = {y2} mm Post-tensioning force (Pv) = {Pv} kN  {DEC 0} LL shear due to fatigue  (e.g., 0.7*SM1600 excl UDL) (Vftge) = {Vftge} kN Shear force due to self-weight of girder (Vsw) = {Vsw} kN Shear force due to dead load of insitu concrete slab (Vslab) = {Vslab} kN Superimposed dead load shear (Vsdl) = {Vsdl} kN Maximum allowable fatigue shear (Vucftge) = {Vucftge} kN (Vucftge = 0.6 * [0.2*f’cg*Bw2*do/1000 + Pv]) Design Live Load shear due to fatigue (Vfatigue) = {Vfatigue} kN  {DEC 1} (Vfatigue = Vftge + Vsw + Vslab + Vsdl) Height to composite centroid (Yc) = {Yc} mm Height to web/flange joint (Dwf) = {Dwf} mm Dist from web/flange to composite centroid  (y2 = Yc – Dwf) = {y2} mm {EXP 4} Section modulus - slab top  (Zst) = {Zst} mm^3 Composite moment of inertia (Ic) = {Ic} mm^4 {DEC 0} LL moment due to fatigue  (e.g., 0.7*SM1600 excl UDL) (Mftge) = {Mftge} kN.m Bending moment due to self-weight of girder (Msw) = {Msw} kN.m Bending moment due to dead load of insitu concrete slab (Mslab) = {Mslab} kN.m Bending moment due to superimposed dead load (Msdl) = {Msdl} kN.m Design Live Load moment due to fatigue (Mfatigue) = {Mfatigue} kN.m  {DEC 2} (Mfatigue = Mftge + Msw + Mslab + Msdl) Max fatigue compressive stress in deck (fcslabf = -Mfatigue*10^6/Zst) = {fcslabf} MPa Max fatigue compressive stress in web  (fcwebf = -Mfatigue*y2*10^6/Ic) = {fcwebf} MPa  {DEC 1} Calculate stress range in steel prestressing strand Maximum distance of strand from composite centroid (Ybarrmax) = {Ybarrmax} mm (Loop through all strands and check if Ybarrmax > Yc – Ystrand) Maximum stress range in prestressing steel (fsrangps) = {fsrangps} MPa (If Ybarrmax > 1 then fsrangps = Mftge*10^6*Ybarrmax / Ic else  fsrangps = 0) Calculate stress range in passive steel reinforcement Maximum distance of R/F bar from composite centroid (Yrfmmax) = {Yrfmmax} mm (Loop through all strands and check if Yrfmmax > Yc – Yrf) Maximum stress range in passive steel R/F (fsrangre) = {fsrangre} MPa (If Yrfmmax > 1 then fsrangre = Mftge*10^6*Yrfmmax / Ic else  fsrangre = 0) Check calculated shears and stresses against allowable values Calculated fatigue compressive stress in deck (fcslabf) = {fcslabf} MPa Calculated fatigue compressive stress in web  (fcwebf) = {fcwebf} MPa Maximum permitted fatigue compressive stress (f’cftge) = {f`cftge} MPa Calculated stress range in prestressing steel (fsrangps) = {fsrangps} MPa Maximum permissible fatigue stress range in PS strand (fftgeps) = {fftgeps} Mpa Calculated stress range in passive steel R/F (fsrangre) = {fsrangre} MPa Maximum permissible fatigue stress range in passive R/F (fftgere) = {fftgere} Mpa Calculated design Live Load shear due to fatigue (Vfatigue) = {Vfatigue} kN Maximum allowable fatigue shear (Vucftge) = {Vucftge} kN On the basis of the above calculated and allowable values: {FtgeOK\$}