ACES PSC Design Module V{VERSION}: Run date: {DATE}
-------------------------------------------------------------------------------------------------
Heading: {PROJECT}
Job Name: {JOBNAME}
Designer: {DESIGNER}
Comments: {COMMENT1}
Units: mm, kN, kN.m, MPa
Design Code: {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------
{DEC 0} SECTION: {Sectnum}: ({SecName$})
|
Distance (x) of section from the first node = {x} mm |
|
|
|
|
|
|
|
|
|
Strand segment number: {SectSSeg} |
|
|
|
|
Passive R/F segment number: {SectPSeg} |
|
|
|
SERVICEABILITY CHECK {DEC 0}
|
Area of girder (Ag) |
= |
{Ag} |
|
mm^2 |
|
Eccentricity of CG strands from CG girder (e) |
= |
{e} |
|
mm {EXP 4} |
|
|
|
|
|
|
|
Section modulus of girder - top (Zt) |
= |
{Zt} |
|
mm^3 |
|
Section modulus of girder - bottom (Zb) |
= |
{Zb} |
|
mm^3 |
|
|
|
|
|
|
|
Section modulus of composite girder - slab top (Zst) |
= |
{Zst} |
|
mm^3 |
|
Section modulus of composite girder - slab bot (Zsb) |
= |
{Zsb} |
|
mm^3 |
|
Section modulus of composite girder - girder top (Zgt) |
= |
{Zgt} |
|
mm^3 |
|
Section modulus of composite girder - girder bot (Zgb) |
= |
{Zgb} |
|
mm^3 {DEC 0} |
|
|
|
|
|
|
|
Prestress force at transfer (Pt) |
= |
{Pt} |
|
kN |
|
Moment due to PS force at transfer (Mpte = - Pt*e/1000) |
= |
{Mpte} |
|
kN.m |
|
Moment due to self-weight of girder (Msw) |
= |
{Msw} |
|
kN.m |
|
|
|
|
|
|
|
Girder stresses at transfer: (Tension = +ve) |
|
|
|
{DEC 2} |
|
|
|
|
|
|
|
Stress at top of girder due to PS force (= -Pt*1000/Ag) |
= |
{fgt1} |
|
MPa (= stress at bottom of girder) |
|
Stress at top of girder due to PS eccentricity (-Mpte*E6/Zt) |
= |
{fgt2} |
|
MPa |
|
Stress at bot of girder due to PS eccentricity (Mpte*E6/Zb) |
= |
{fgb2} |
|
MPa |
|
Stress at top of girder due to girder selfwt (-Msw*E6/Zt) |
= |
{fgt3} |
|
MPa |
|
Stress at bot of girder due to girder selfwt (Msw*E6/Zb) |
= |
{fgb3} |
|
MPa |
|
|
|
|
|
|
|
Stress at top of girder at transfer (= fgt1+fgt2+fgt3) |
= |
{fgt4} |
|
MPa |
|
Stress at bot of girder at transfer (= fgb1+fgb2+fgb3) |
= |
{fgb4} |
|
MPa |
|
|
|
|
|
|
|
Allowable girder tension stress at transfer (f'cmt) |
= |
{f'cmt} |
|
MPa (Section 8.6.2) |
|
Allowable slab concrete tension stress at transfer (f'csat) |
= |
{f'csat} |
|
MPa (Section 8.6.2) |
|
(f'csat = 0.5*f'cmt^0.5) |
|
|
|
|
|
Allowable concrete compression stress at transfer (f'csac) |
= |
-{f'csac} |
|
MPa (Section 8.6.2) |
|
(f'csac = 0.6*f'cmt) |
|
|
|
|
|
SLS Load Factors: {DEC 1} |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
{DEC 2}
Temperature Stresses: (MPa - Tension +ve)
|
|
Hot Top |
Cold Top |
Slab |
Top |
{ftempsth} |
{ftempstc} |
|
Bottom |
{ftempsbh} |
{ftempsbc} |
Girder |
Top |
{ftempgth} |
{ftempgtc} |
|
Bottom |
{ftempgbh} |
{ftempgbc} |
Other Design Stresses: (MPa - Tension +ve)
Load case |
Moment (kN.m) |
Slab Top |
Slab Bottom |
Girder Top |
Girder Bottom |
Secondary prestress |
{MPrefact} |
{fstmpre} |
{fsbmpre} |
{fgtmpre} |
{fgbmpre} |
Differential shrinkage |
{MDshfact} |
{fstmdsh} |
{fsbmdsh} |
{fgtmdsh} |
{fgbmdsh} |
Residual creep |
{MRCrfact} |
{fstmcre} |
{fsbmcre} |
{fgtmcre} |
{fgbmcre} |
Differential settlement |
{MDSefact} |
{fstdset} |
{fsbdset} |
{fgtdset} |
{fgbdset} |
User transient effects |
{MUsTfact} |
{fstmutr} |
{fsbmutr} |
{fgtmutr} |
{fgbmutr} |
Final design stresses: (Tension = +ve Compression (-)ve) |
{DEC 0} |
||||
|
|
|
|
|
|
|
Final design prestress force (P) |
= |
{P} |
|
kN {DEC 2} |
|
Axial stress at top girder due to PS force (- P*1000/Ag) |
= |
{fgtss1} |
|
MPa |
|
Axial stress at bottom of girder due to PS force (= top stress) |
= |
{fgbss1} |
|
MPa {DEC 0} |
|
Moment due to eccentricity of PS force (Mpe = -P*e/1000) |
= |
{Mpe} |
|
kN.m |
|
|
|
|
|
|
|
Basis of stress calculations: |
|
|
|
|
|
|
|
|
|
|
|
Stresses due to prestress, self-weight and insitu deck slab are calculated using girder moduli Zt and Zb viz: |
||||
|
fgt = -M*10^6/Zt and fgb = M*10^6/Zb where M represents the relevant moment. |
||||
|
|
|
|
|
|
|
All other stresses are calculated using girder moduli of the composite section viz: fst = -M*10^6/Zst; fsb = -M*10^6/Zsb; fgt = -M*10^6/Zgt; fgb = M*10^6/Zgb |
Summary of final stresses: Combination {SLScombu} {DEC 2}
|
|
|
|
|
||||||||
Loading |
Value (kN,kN.m) |
Slab Top (MPa) |
Slab Bottom (MPa) |
Girder Top (MPa) |
Girder Bottom (MPa) |
|
||||||
1 |
Final prestress force |
{P} |
|
|
{fgtss1} |
{fgbss1} |
|
|||||
2 |
Prestress eccentricity |
{Mpe} |
|
|
{fgtss2} |
{fgbss2} |
|
|||||
3 |
Girder self-weight |
{Mswfact} |
|
|
{fgtss3} |
{fgbss3} |
|
|||||
4 |
Insitu deck slab |
{Mslafact} |
|
|
{fgtss4} |
{fgbss4} |
|
|||||
5 |
Superimposed dead load |
{MSDLfact} |
{fstss5} |
{fsbss5} |
{fgtss5} |
{fgbss5} |
|
|||||
6 |
Design live load |
{MLLfact} |
{fstss7} |
{fsbss7} |
{fgtss7} |
{fgbss7} |
||||||
7 |
Primary shrinkage stress |
{Mshrfact} |
{fstss6} |
{fsbss6} |
{fgtss6} |
{fgbss6} |
|
|||||
8 |
Primary temp. stress Hot top * |
{MPThtfac} |
{ftempsth} |
{ftempsbh} |
{ftempgth} |
{ftempgbh} |
|
|||||
9 |
Primary temp. stress Cold top * |
{MPTctfac} |
{ftempstc} |
{ftempsbc} |
{ftempgtc} |
{ftempgbc} |
||||||
10 |
Secondary prestress |
{MPrefact} |
{fstmpre} |
{fsbmpre} |
{fgtmpre} |
{fgbmpre} |
||||||
11 |
Secondary differential shrinkage |
{MDshfact} |
{fstmdsh} |
{fsbmdsh} |
{fgtmdsh} |
{fgbmdsh} |
||||||
12 |
Secondary residual creep |
{MRCrfact} |
{fstmcre} |
{fsbmcre} |
{fgtmcre} |
{fgbmcre} |
||||||
13 |
Secondary temp. stress Hot top * |
{MDThtfac} |
{fstmdth} |
{fsbmdth} |
{fgtmdth} |
{fgbmdth} |
||||||
14 |
Secondary temp. stress Cold top * |
{MDTctfac} |
{fstmdtc} |
{fsbmdtc} |
{fgtmdtc} |
{fgbmdtc} |
|
|||||
15 |
Differential settlement |
{MDSefact} |
{fstdset} |
{fsbdset} |
{fgtdset} |
{fgbdset} |
||||||
16 |
User transient effects |
{MUsTfact} |
{fstmutr} |
{fsbmutr} |
{fgtmutr} |
{fgbmutr} |
|
|||||
Total stress: DL+Design Live Load |
{fstll} |
{fsbll} |
{fgtll} |
{fgbll} |
|
|||||||
* Temperature stress notes 1. Primary and secondary stresses must co-exist 2. Primary stresses will not be applied if the SLS load factor for differential temperature is zero 3. Temperature stress is added only if it increases the magnitude of the final stress. |
28 day concrete compressive strength of girder (fcg) |
= |
{f`cg} |
|
MPa |
|
|
|||||
|
Allowable concrete tension stress for LL (f'at = 0.25f'cg^0.5) |
= |
{f'at} |
|
MPa (Clause 8.6.2) |
|
Allowable concrete comprn stress for LL (f'ac = 0.4*f'cg) |
= |
-{f'ac} |
|
MPa (Clause 8.1.4.2) |