ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Units:    mm, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

{DEC 0} SECTION:   {Sectnum}:  ({SecName\$})

 Distance (x) of section from the first node = {x}  mm Strand segment number:  {SectSSeg} Passive R/F segment number:  {SectPSeg}

SERVICEABILITY CHECK {DEC 0}

 Area of girder (Ag) = {Ag} mm^2 Eccentricity of CG strands from CG girder (e) = {e} mm {EXP 4} Section modulus of girder - top       (Zt) = {Zt} mm^3 Section modulus of girder - bottom (Zb) = {Zb} mm^3 Section modulus of composite girder - slab top    (Zst) = {Zst} mm^3 Section modulus of composite girder - slab bot    (Zsb) = {Zsb} mm^3 Section modulus of composite girder - girder top (Zgt) = {Zgt} mm^3 Section modulus of composite girder - girder bot (Zgb) = {Zgb} mm^3 {DEC 0} Prestress force at transfer (Pt) = {Pt} kN Moment due to PS force at transfer (Mpte = - Pt*e/1000) = {Mpte} kN.m Moment due to self-weight of girder (Msw) = {Msw} kN.m Girder stresses at transfer: (Tension = +ve) {DEC 2} Stress at top of girder due to PS force (= -Pt*1000/Ag) = {fgt1} MPa (= stress at bottom of girder) Stress at top of girder due to PS eccentricity (-Mpte*E6/Zt) = {fgt2} MPa Stress at bot of girder due to PS eccentricity (Mpte*E6/Zb) = {fgb2} MPa Stress at top of girder due to girder selfwt (-Msw*E6/Zt) = {fgt3} MPa Stress at bot of girder due to girder selfwt (Msw*E6/Zb) = {fgb3} MPa Stress at top of girder at transfer (= fgt1+fgt2+fgt3) = {fgt4} MPa Stress at bot of girder at transfer (= fgb1+fgb2+fgb3) = {fgb4} MPa Allowable girder tension stress at transfer (f'cmt) = {f'cmt} MPa (Section 8.6.2) Allowable slab concrete tension stress at transfer (f'csat) = {f'csat} MPa (Section 8.6.2) (f'csat = 0.5*f'cmt^0.5) Allowable concrete compression stress at transfer (f'csac) = -{f'csac} MPa (Section 8.6.2) (f'csac = 0.6*f'cmt)

 DL Second.        PS SDL Diff. Shrink. Residual Creep Diff.  Settle. LL Diff.    Temp. User Transient Include? Comb. 1 {LfSDLC1} {LfSPsC1} {LfSSDLC1} {LfSDshC1} {LfSReCC1} {LfSDStC1} {LfSLLC1} {LfSDTeC1} {LfSUTrC1} {IncSLSC1} Comb. 2 {LfSDLC2} {LfSPsC2} {LfSSDLC2} {LfSDshC2} {LfSReCC2} {LfSDStC2} {LfSLLC2} {LfSDTeC2} {LfSUTrC2} {IncSLSC2} Comb. 3 {LfSDLC3} {LfSPsC3} {LfSSDLC3} {LfSDshC3} {LfSReCC3} {LfSDStC3} {LfSLLC3} {LfSDTeC3} {LfSUTrC3} {IncSLSC3} Comb. 4 {LfSDLC4} {LfSPsC4} {LfSSDLC4} {LfSDshC4} {LfSReCC4} {LfSDStC4} {LfSLLC4} {LfSDTeC4} {LfSUTrC4} {IncSLSC4} Comb. 5 {LfSDLC5} {LfSPsC5} {LfSSDLC5} {LfSDshC5} {LfSReCC5} {LfSDStC5} {LfSLLC5} {LfSDTeC5} {LfSUTrC5} {IncSLSC5} Comb. 6 {LfSDLC6} {LfSPsC6} {LfSSDLC6} {LfSDshC6} {LfSReCC6} {LfSDStC6} {LfSLLC6} {LfSDTeC6} {LfSUTrC6} {IncSLSC6} Critical ({SLScombu}) {LfSLSDL} {LfSLSPS} {LfSLSSDL} {LfSLSDSh} {LfSLSRcr} {LfSLSDSt} {LfSLSLL} {LfSLSDTe} {LfSLSUTr}

{DEC 2}

Temperature Stresses:  (MPa - Tension +ve)

 Hot Top Cold Top Slab Top {ftempsth} {ftempstc} Bottom {ftempsbh} {ftempsbc} Girder Top {ftempgth} {ftempgtc} Bottom {ftempgbh} {ftempgbc}

Other Design Stresses:  (MPa - Tension +ve)

 Load case Moment (kN.m) Slab Top Slab Bottom Girder Top Girder Bottom Secondary prestress {MPrefact} {fstmpre} {fsbmpre} {fgtmpre} {fgbmpre} Differential shrinkage {MDshfact} {fstmdsh} {fsbmdsh} {fgtmdsh} {fgbmdsh} Residual creep {MRCrfact} {fstmcre} {fsbmcre} {fgtmcre} {fgbmcre} Differential settlement {MDSefact} {fstdset} {fsbdset} {fgtdset} {fgbdset} User transient effects {MUsTfact} {fstmutr} {fsbmutr} {fgtmutr} {fgbmutr}

 Final design stresses: (Tension = +ve   Compression  (-)ve) {DEC 0} Final design prestress force (P) = {P} kN {DEC 2} Axial stress at top girder due to PS force (- P*1000/Ag) = {fgtss1} MPa Axial stress at bottom of girder due to PS force (= top stress) = {fgbss1} MPa {DEC 0} Moment due to eccentricity of PS force (Mpe = -P*e/1000) = {Mpe} kN.m Basis of stress calculations: Stresses due to prestress, self-weight and insitu deck slab are calculated using girder moduli Zt and Zb viz: fgt = -M*10^6/Zt and fgb = M*10^6/Zb where M represents the relevant moment. All other stresses are calculated using girder moduli of the composite section viz:  fst = -M*10^6/Zst; fsb = -M*10^6/Zsb; fgt = -M*10^6/Zgt; fgb = M*10^6/Zgb

 Summary of final stresses:      Combination {SLScombu} {DEC 2} Loading Value (kN,kN.m) Slab Top (MPa) Slab Bottom (MPa) Girder Top (MPa) Girder Bottom (MPa) 1 Final prestress force {P} {fgtss1} {fgbss1} 2 Prestress eccentricity {Mpe} {fgtss2} {fgbss2} 3 Girder self-weight {Mswfact} {fgtss3} {fgbss3} 4 Insitu deck slab {Mslafact} {fgtss4} {fgbss4} 5 Superimposed dead load {MSDLfact} {fstss5} {fsbss5} {fgtss5} {fgbss5} 6 Design live load {MLLfact} {fstss7} {fsbss7} {fgtss7} {fgbss7} 7 Primary shrinkage stress {Mshrfact} {fstss6} {fsbss6} {fgtss6} {fgbss6} 8 Primary temp. stress  Hot top  * {MPThtfac} {ftempsth} {ftempsbh} {ftempgth} {ftempgbh} 9 Primary temp. stress  Cold top * {MPTctfac} {ftempstc} {ftempsbc} {ftempgtc} {ftempgbc} 10 Secondary prestress {MPrefact} {fstmpre} {fsbmpre} {fgtmpre} {fgbmpre} 11 Secondary differential shrinkage {MDshfact} {fstmdsh} {fsbmdsh} {fgtmdsh} {fgbmdsh} 12 Secondary residual creep {MRCrfact} {fstmcre} {fsbmcre} {fgtmcre} {fgbmcre} 13 Secondary temp. stress  Hot top  * {MDThtfac} {fstmdth} {fsbmdth} {fgtmdth} {fgbmdth} 14 Secondary temp. stress  Cold top * {MDTctfac} {fstmdtc} {fsbmdtc} {fgtmdtc} {fgbmdtc} 15 Differential settlement {MDSefact} {fstdset} {fsbdset} {fgtdset} {fgbdset} 16 User transient effects {MUsTfact} {fstmutr} {fsbmutr} {fgtmutr} {fgbmutr} Total stress: DL+Design Live Load {fstll} {fsbll} {fgtll} {fgbll}

 *   Temperature stress notes   1.  Primary and secondary stresses must co-exist   2.  Primary stresses will not be applied if the SLS load factor for differential temperature is zero   3.  Temperature stress is added only if it increases the magnitude of the final stress.

 28 day concrete compressive strength of girder (fcg) = {f`cg} MPa Allowable concrete tension stress for LL (f'at = 0.25f'cg^0.5) = {f'at} MPa   (Clause 8.6.2) Allowable concrete comprn stress for LL (f'ac = 0.4*f'cg) = -{f'ac} MPa   (Clause 8.1.4.2)