ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Units:    mm, microstrain, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum} ({SecName\$})

 Distance (x) of section from the first node = {x}  mm

PRESTRESS LOSSES

 Initial jacking force (Pj) = {Pj} kN {DEC 3} Jacking force factor (Jf) = {Jf} Loss due to Steam Relaxation (default based on Transport SA method) The steam relaxation factor (k5) is the larger of 0.0 or: The maximum of:  k5a = 1 + (Jf - 0.7)*0.5/0.1 = {k5a} and:  k5b = (Jf-0.4)/0.3 = {k5b} Steam relaxation factor (k5) = {k5} Loss due to relaxation  (Lsrl = 0.1*k5/1.5) = {Lsrl} {DEC 1} Loss in PS due to relaxation  (Prl = - Lsrl*Pj) = {Prl} kN Loss as a proportion of Pj  (Lsr = - 100*Lsrl) = {Lsr} %   {DEC 0} PS force remaining  (Pjr = Pj + Prl) = {Pjr} kN Elastic Deformation Loss Area of a single strand (Aps) = {Aps} mm^2 Area of bonded PS steel (Ap = Nbbars*Aps) = {Ap} mm^2 Mean Young's Modulus of girder concrete (Egmt) = {Egmt} MPa Young's Modulus of stressing steel (Ep) = {Ep} MPa Area of girder (Ag) = {Ag} mm^2  {EXP 4} Moment of inertia of girder (Ig) = {Ig} mm^4 {DEC 0} Dist between CG girder and CG of strands (e) = {e} mm Moment due to girder self-weight (Msw) = {Msw} kN.m Stress at CG of strand group: {DEC 2} f’cgs = - Pjr*1000*(1/Ag+e^2/Ig)+Msw*10^6*e/Ig = {fcgs} MPa {DEC 1} Elastic deformation loss: Pelastic = fcgs*Ep*Ap/(Egmt*1000) = {Pelastic} kN.m Loss as a proportion of Pj (Ledl = - Pelastic*100/Pj) = {Ledl} %  {DEC 0} PS force at transfer (Pt = Pjr + Pelastic) = {Pt} kN {DEC 1} PS at transfer as a proportion of Pj (Ltr = Pt*100/Pj) = {Ltr} % Shrinkage Loss {DEC 0} Aggregate source location: {AgSrce\$} Bridge environment: {Environ\$} Girder strength  (f’cg) = {f`cg} MPa Hypothetical thickness  (th = At/(Gp + 0.5*Vp))) = {th} mm {DEC 2} Factor a1  (fctra1#4) = {fctra1#4} (Figure 3.1.7.2)  {DEC 0} Basic drying shrinkage strain  (Ecsd.b) = {Ecsd.b} {DEC 2} Factor k4   (fctrk4#4) = {fctrk4#4} [Clause 3.1.7.2(4)] Final strain: {DEC 0} Autogenous shrinkage strain  (E’csc) = {E`csc} {DEC 2} Factor  k1  (fctrk1#4) = {fctrk1#4} {DEC 0} Drying shrinkage strain  (Ecsd4) = {Ecsd4} Total shrinkage strain  (us = E’csc + Ecsd4) = {us} Loss in PS due to shrinkage: Area of girder (Ag) = {Ag} mm^2 Area of concrete slab (As) = {As} mm^2  {DEC 2} Modular ratio (n = Es/Eg) = {n} {DEC 0} Effective area of composite girder (Ac = n*As + Ag) = {Ac} mm^2 Total area of longitudinal reinforcement (Arl) = {Arl} mm^2 Pshr = - us*Ep*Ap*10^-9/(1 + 15*Arl/Ac) = {Pshr} kN {DEC 1} Loss as a proportion of Pj: (Lshr = - Pshr*100/Pj) = {Lshr} %  {DEC 0} PS force remaining after shrinkage: (Prs=Pt+Pshr) = {Prs} kN Creep Loss due to Prestress & Self-Weight Time between when the girder starts to dry and when it is made composite = {Tdrygc} Days Time at which the girder is first loaded = {Tloadg} Days 28 day girder concrete strength (f'cg) = {f`cg} MPa Actual area of composite girder (At) = {At} mm^2 Exposed girder perimeter (Gp) = {Gp} mm Void perimeter (Vp) = {Vp} mm Theoretical thickness girder only (th1 = 2*At/Gp) = {th1} (Clause 6.1.7) {DEC 3} Basic concrete creep coefficient  (Coefcr) = {Coefcr} (Table 3.1.8.2) Factor  a2  (fctra2#2) = {fctra2#2} (Figure 3.1.8.3) Factor  k2  (fctrk2#2) = {fctrk2#2} (Clause 3.1.8.3) Factor  k3  (fctrk3#2) = {fctrk3#2} (Clause 3.1.8.3) Factor  k4  (fctrk4#5) = {fctrk4#5} (Clause 3.1.8.3) Factor  k5  (fctrk5#2) = {fctrk5#2} (Clause 3.1.8.3) Design creep factor (Øcc = Coefcr*k2*k3*k4*k5) = {Occ} (Clause 3.1.8.3) {DEC 0} Moment due to girder self-weight (Msw) = {Msw} kN.m Young's Modulus of girder at 28 days (Eg) = {Eg} MPa {DEC 1} Creep stress at CG of strand group: fcscgs = -Pt*1000(1/Ag + e^2/Ig) + Msw*10^6*e/Ig = {fcscgs} MPa Creep strain at CG of strand group  (Eqn 3.4.3.3): {DEC 0} ucc1 = (10^6*0.8*fcscgs*Øcc)/Eg = {ucc1} Creep Loss due to Deck & Superimposed Loads Deal load moment of concrete slab (Mslab) = {Mslab} kN.m Moment due to superimposed loads (Msdl) = {Msdl} kN.m {EXP 4} Moment of inertia of girder (Ig) = {Ig} mm^4 Moment of inertia of composite sectn (Ic) = {Ic} mm^4 {DEC 0} Height to centroid of girder (Yb) = {Yb} mm Height to centroid of composite sectn (Yc) = {Yc} mm Height to CG of strand group (Ycgs) = {Ycgs} mm {DEC 2} Stress at CG due to the concrete deck: Fdeck = Mslab*10^6*(Yb - Ycgs)/Ig = {Fdeck} MPa Stress at CG due to the superimposed DL: Fsdl = Msdl*10^6*(Yc - Ycgs)/Ic = {Fsdl} MPa {DEC 0} Time at which all girder creep has finished = {Tfinal} Days Time at which the girder is first loaded = {Tloadg} Days 28 day slab concrete strength (f'cs) = {f`cs} MPa {DEC 2} Basic creep coefficient of slab (Coefcrs) = {Coefcrs} [Table 3.1.8.2] {DEC 4} Factor  a2  (fctra2#3) = {fctra2#2} [Figure 3.1.8.3] Factor  k2  (fctrk2#3) = {fctrk2#2} (Clause 3.1.8.3) Factor  k3  (fctrk3#3) = {fctrk3#2} (Clause 3.1.8.3) {DEC 2} Factor  k4  (fctrk4#6) = {fctrk4#5} (Clause 3.1.8.3) Factor  k5  (fctrk5#3) = {fctrk5#2} (Clause 3.1.8.3) Design creep factor  (Øcc2 = Coefcrs*k2*k3*k4*k5) = {Occ2} [Clause 3.1.8.3] {DEC 0} Creep strain at CG of strand group   (Eqn 3.4.3.3): ucc2 = Øcc2*0.8*10^6*(Fdeck+Fsdl)/Eg = {ucc2} Total creep strain: ucc = ucc1 + ucc2 = {ucc} Summary of Creep Losses {DEC 1} Loss in PS due to creep (Pcreep = ucc*Ep*Ap/10^9)              = {Pcreep} kN Loss as a proportion of Pj (Lcr = - Pcreep*100/Pj)                 = {Lcr} %  {DEC 0} Summary of Prestress Losses Total remaining prestress force (P = Pt + Pshr + Pcreep)     = {P} kN  {DEC 1} Total loss of PS as a proportion of Pj (Ltt = P*100/Pj)           = {Ltt} %

 Force (kN) %Pj JACKING FORCE (Pj) {Pj} 100 Loss in PS due to relaxation {Prl} {Lsr} Loss in PS due to elastic deformation {Pelastic} {Ledl} TRANSFER FORCE (Pt) {Pt} {Ltr} Loss in PS due to shrinkage {Pshr} {Lshr} Loss in PS due to creep {Pcreep} {Lcr} FINAL PS FORCE (P) {P} {Ltt} {DEC 0}