ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Units:    mm, microstrain, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}

 Distance (x) of section from the first node = {x}  mm Strand segment number:  {SectSSeg} Passive R/F segment number:  {SectPSeg}

PRESTRESS LOSSES

 Initial jacking force (Pj) = {Pj} kN {DEC 3} Jacking force factor (Jf) = {Jf} Loss due to Steam Relaxation The steam relaxation factor (k5) is the larger of 0.0 or: The maximum of: k5a = 1 + (Jf-0.7)*0.5/0.1 = {k5a} ({CODE} (Fig 6.3.4)) and: k5b = (Jf-0.4)/0.3 = {k5b} Steam relaxation factor (k5) = {k5} Loss due to relaxation (Lsrl = 0.1*k5/1.5) = {Lsrl} {DEC 1} Loss in PS due to relaxation (Prl = - Lsrl*Pj) = {Prl} kN Loss as a proportion of Pj (Lsr = - 100*Lsrl) = {Lsr} % PS force remaining (Pjr = Pj + Prl) = {Pjr} kN Elastic Deformation Loss Area of a single strand (Aps) = {Aps} mm^2 Area of bonded PS steel (Ap = Nbbars*Aps) = {Ap} mm^2 Mean Young's Modulus of girder concrete (Egmt) = {Egmt} MPa Young's Modulus of stressing steel (Ep) = {Ep} MPa Area of girder (Ag) = {Ag} mm^2  {EXP 4} Moment of inertia of girder (Ig) = {Ig} mm^4 {DEC 01} Dist between CG girder and CG of strands (e) = {e} mm Moment due to girder selfweight (Msw) = {Msw} kN.m Stress at CG of strand group: {DEC 2} fcgs = - Pjr*1000*(1/Ag + e^2/Ig) + Msw*10^6*e/Ig = {fcgs} MPa {DEC 1} Elastic deformation loss: Pelastic = fcgs*Ep*Ap/(Egmt*1000) = {Pelastic} kN.m Loss as a proportion of Pj (Ledl = - Pelastic*100/Pj) = {Ledl} % PS force at transfer (Pt = Pjr + Pelastic) = {Pt} kN PS at transfer as a proportn of Pj (Ltr = Pt*100/Pj) = {Ltr} % Shrinkage Loss {DEC 1} Shrinkage strain (us) [Figure 6.1.7] = {us} microstrain {DEC 3} Modular ratio (n = Es/Eg) = {n} {DEC 0} Area of concrete slab (As) = {As} mm^2 Total area of longitudinal reinforcement (Arl) = {Arl} mm^2 Effective area of composite girder (Ac = n*As + Ag) = {Ac} mm^2 {DEC 1} Loss in PS due to shrinkage: Pshr = - us*Ep*Ap*10^-9/(1 + 15*Arl/Ac) = {Pshr} kN ({CODE} Clause 6.4.3.2) Loss as a proportion of Pj: (Lshr = - Pshr*100/Pj) = {Lshr} % PS force remaining after shrinkage: (Prs=Pt+Pshr) = {Prs} kN Creep Loss due to Prestress & Self-Weight Moment due to girder self-weight (Msw) = {Msw} kN.m {DEC 0} Actual area of composite girder (At) = {At} mm^2 Exposed girder perimeter (Gp) = {Gp} mm Void perimeter (Vp) = {Vp} mm Young's Modulus of girder at 28 days (Eg) = {Eg} MPa {DEC 1} Mean girder concrete strength at transfer (f'cmt) = {f'cmt} MPa 28 day girder concrete strength (f'cg) = {f'cg} MPa {DEC 2} Theoretical thickness (th = 2*At/(Gp + 0.5*Vp)) = {th} ({CODE} Clause 6.1.7) Ratio of concrete strengths (Fratio = f'cmt/f'cg) = {Fratio} Basic creep factor (Øccb) = {Occb} ({CODE} Table 6.1.8a) Creep coefficient (k2) = {k2} ({CODE} Figure 6.1.8a) Creep coefficient (k3) = {k3} ({CODE} Figure 6.1.8b) Design creep factor (Øcc = Øccb*k2*k3) = {Occ} ({CODE} Clause 6.1.8.2) {DEC 2} Creep stress at CG of strand group: fcscgs = -Pt*1000(1/Ag + e^2/Ig) + Msw*10^6*e/Ig = {fcscgs} MPa {DEC 1} Creep strain at CG of strand group: ucc1 = (10^6*fcscgs* Øcc)/Eg = {ucc1} microstrain Creep Loss due to Deck & Superimposed Loads {DEC 1} Deal load moment of concrete slab (Mslab) = {Mslab} kN.m Moment due to superimposed loads (Msdl) = {Msdl} kN.m {EXP 4} Moment of inertia of girder (Ig) = {Ig} mm^4 Moment of inertia of composite sectn (Ic) = {Ic} mm^4 {DEC 1} Height to centroid of girder (Yb) = {Yb} mm Height to centroid of composite sectn (Yc) = {Yc} mm Height to CG of strand group (Ycgs) = {Ycgs} mm {DEC 2} Stress at CG due to concrete deck: Fdeck = Mslab*10^6*(Yb - Ycgs)/Ig = {Fdeck} MPa Stress at CG due to superimposed DL: Fsdl = Msdl*10^6*(Yc - Ycgs)/Ic = {Fsdl} MPa {DEC 2} Basic creep factor (Øccb) = {Occb} ({CODE} Table 6.1.8A) Creep coefficient (k2s) = {k2s} ({CODE} Figure 6.1.8A) Creep coefficient (k3s) = {k3s} ({CODE} Figure 6.1.8B) Design creep factor (Øcc2 = Øccb*k2s*k3s) = {Occ2} ({CODE} Clause 6.1.8.2) {DEC 1} Creep strain at CG of strand group: ucc2 = Øcc2*10^6*(Fdeck+Fsdl)/Eg = {ucc2} microstrain Total creep strain: ucc = ucc1 + ucc2 = {ucc} microstrain Summary of Creep Losses {DEC 1} Loss in PS due to creep (Pcreep = ucc*Ep*Ap/10^9)     = {Pcreep} kN Loss as a proportion of Pj (Lcr = - Pcreep*100/Pj)         = {Lcr} % Summary of Prestress Losses Total remaining prestress force (P = Pt + Pshr + Pcreep)  = {P} kN Total loss of PS as a proportion of Pj (Ltt = P*100/Pj)     = {Ltt} %
 Force (kN) %Pj JACKING FORCE (Pj) {Pj} 100 Loss in PS due to relaxation {Prl} {Lsr} Loss in PS due to elastic deformation {Pelastic} {Ledl} TRANSFER FORCE (Pt) {Pt} {Ltr} Loss in PS due to shrinkage {Pshr} {Lshr} Loss in PS due to creep {Pcreep} {Lcr} FINAL PS FORCE (P) {P} {Ltt} {DEC 0}