ACES PSC Design Module V{VERSION}: Run date: {DATE}
-------------------------------------------------------------------------------------------------
Heading: {PROJECT}
Job Name: {JOBNAME}
Designer: {DESIGNER}
Comments: {COMMENT1}
Units: mm, microstrain, kN, kN.m, MPa
Design Code: {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------
SECTION: {Sectnum} ({SecName$})
|
Distance (x) of section from the first node = {x} mm |
|
|
|
|
|
|
|
|
PRESTRESS LOSSES
|
Initial jacking force (Pj) |
= |
{Pj} |
|
kN {DEC 3} |
||||||
|
Jacking force factor (Jf) |
= |
{Jf} |
|
|
||||||
|
|
|
|
|
|||||||
|
Loss due to Steam Relaxation (default based on Transport SA method) |
|
|
|
|||||||
|
|
|
|
|
|||||||
|
The steam relaxation factor (k5) is the larger of 0.0 or: |
||||||||||
|
The maximum of: k5a = 1 + (Jf - 0.7)*0.5/0.1 |
= |
{k5a} |
|
|||||||
|
and: k5b = (Jf-0.4)/0.3 |
= |
{k5b} |
|
|
||||||
|
|
|
|
|
|||||||
|
Steam relaxation factor (k5) |
= |
{k5} |
|
|
||||||
|
Loss due to relaxation (Lsrl = 0.1*k5/1.5) |
= |
{Lsrl} |
|
{DEC 1} |
||||||
|
|
|
|
|
|||||||
|
Loss in PS due to relaxation (Prl = - Lsrl*Pj) |
= |
{Prl} |
|
kN |
||||||
|
Loss as a proportion of Pj (Lsr = - 100*Lsrl) |
= |
{Lsr} |
|
% {DEC 0} |
||||||
|
PS force remaining (Pjr = Pj + Prl) |
= |
{Pjr} |
|
kN |
||||||
|
|
|
|
|
|||||||
|
Elastic Deformation Loss |
|
|
|
|||||||
|
|
|
|
|
|||||||
|
Area of a single strand (Aps) |
= |
{Aps} |
|
mm^2 |
||||||
|
Area of bonded PS steel (Ap = Nbbars*Aps) |
= |
{Ap} |
|
mm^2 |
||||||
|
|
|
|
|
|||||||
|
Mean Young's Modulus of girder concrete (Egmt) |
= |
{Egmt} |
|
MPa |
||||||
|
Young's Modulus of stressing steel (Ep) |
= |
{Ep} |
|
MPa |
||||||
|
Area of girder (Ag) |
= |
{Ag} |
|
mm^2 {EXP 4} |
||||||
|
Moment of inertia of girder (Ig) |
= |
{Ig} |
|
mm^4 {DEC 0} |
||||||
|
Dist between CG girder and CG of strands (e) |
= |
{e} |
|
mm |
||||||
|
Moment due to girder self-weight (Msw) |
= |
{Msw} |
|
kN.m |
||||||
|
|
|
|
|
|||||||
|
Stress at CG of strand group: |
|
|
{DEC 2} |
|||||||
|
|
|
|
|
|||||||
|
f’cgs = - Pjr*1000*(1/Ag+e^2/Ig)+Msw*10^6*e/Ig |
= |
{fcgs} |
|
MPa {DEC 1} |
||||||
|
|
|
|
|
|||||||
|
Elastic deformation loss: |
||||||||||
|
Pelastic = fcgs*Ep*Ap/(Egmt*1000) |
= |
{Pelastic} |
|
kN.m |
||||||
|
Loss as a proportion of Pj (Ledl = - Pelastic*100/Pj) |
= |
{Ledl} |
|
% {DEC 0} |
||||||
|
|
|
|
|
|||||||
|
PS force at transfer (Pt = Pjr + Pelastic) |
= |
{Pt} |
|
kN {DEC 1} |
||||||
|
PS at transfer as a proportion of Pj (Ltr = Pt*100/Pj) |
= |
{Ltr} |
|
% |
||||||
|
|
|
|
|
|||||||
|
Shrinkage Loss |
|
|
{DEC 0} |
|||||||
|
|
||||||||||
Aggregate source location: |
|
||||||||||
{AgSrce$} |
|
||||||||||
Bridge environment: |
|
||||||||||
{Environ$} |
|
||||||||||
|
|
|
|
|
|||||||
|
Girder strength (f’cg) |
= |
{f`cg} |
|
MPa |
||||||
|
Hypothetical thickness (th = At/(Gp + 0.5*Vp))) |
= |
{th} |
|
mm |
||||||
|
|
|
|
{DEC 2} |
|||||||
|
Factor a1 (fctra1#4) |
= |
{fctra1#4} |
|
(Figure 3.1.7.2) {DEC 0} |
||||||
|
Basic drying shrinkage strain (Ecsd.b) |
= |
{Ecsd.b} |
|
{DEC 2} |
||||||
|
Factor k4 (fctrk4#4) |
= |
{fctrk4#4} |
|
[Clause 3.1.7.2(4)] |
||||||
|
|
|
|
|
|||||||
|
Final strain: |
|
|
{DEC 0} |
|||||||
|
Autogenous shrinkage strain (E’csc) |
= |
{E`csc} |
|
{DEC 2} |
||||||
|
Factor k1 (fctrk1#4) |
= |
{fctrk1#4} |
|
{DEC 0} |
||||||
|
Drying shrinkage strain (Ecsd4) |
= |
{Ecsd4} |
|
|
||||||
|
Total shrinkage strain (us = E’csc + Ecsd4) |
= |
{us} |
|
|
||||||
|
|
|
|
|
|||||||
|
Loss in PS due to shrinkage: |
||||||||||
|
Area of girder (Ag) |
= |
{Ag} |
|
mm^2 |
||||||
|
Area of concrete slab (As) |
= |
{As} |
|
mm^2 {DEC 2} |
||||||
|
Modular ratio (n = Es/Eg) |
= |
{n} |
|
{DEC 0} |
||||||
|
Effective area of composite girder (Ac = n*As + Ag) |
= |
{Ac} |
|
mm^2 |
||||||
|
Total area of longitudinal reinforcement (Arl) |
= |
{Arl} |
|
mm^2 |
||||||
|
|
|
|
||||||||
|
Pshr = - us*Ep*Ap*10^-9/(1 + 15*Arl/Ac) |
= |
{Pshr} |
|
kN {DEC 1} |
||||||
|
Loss as a proportion of Pj: (Lshr = - Pshr*100/Pj) |
= |
{Lshr} |
|
% {DEC 0} |
||||||
|
PS force remaining after shrinkage: (Prs=Pt+Pshr) |
= |
{Prs} |
|
kN |
||||||
|
|
|
|
|
|||||||
|
Creep Loss due to Prestress & Self-Weight |
|
|
|
|||||||
|
|
|
|
|
|||||||
|
Time between when the girder starts to dry and when it is made composite |
= |
{Tdrygc} |
|
Days |
||||||
|
|
|
|
|
|||||||
|
Time at which the girder is first loaded |
= |
{Tloadg} |
|
Days |
||||||
|
|
|
|
|
|||||||
|
28 day girder concrete strength (f'cg) |
= |
{f`cg} |
|
MPa |
||||||
|
Actual area of composite girder (At) |
= |
{At} |
|
mm^2 |
||||||
|
Exposed girder perimeter (Gp) |
= |
{Gp} |
|
mm |
||||||
|
Void perimeter (Vp) |
= |
{Vp} |
|
mm |
||||||
|
Theoretical thickness girder only (th1 = 2*At/Gp) |
= |
{th1} |
|
(Clause 6.1.7) {DEC 3} |
||||||
|
|
|
|
|
|||||||
|
Basic concrete creep coefficient (Coefcr) |
= |
{Coefcr} |
|
(Table 3.1.8.2) |
||||||
|
Factor a2 (fctra2#2) |
= |
{fctra2#2} |
|
(Figure 3.1.8.3) |
||||||
|
Factor k2 (fctrk2#2) |
= |
{fctrk2#2} |
|
(Clause 3.1.8.3) |
||||||
|
Factor k3 (fctrk3#2) |
= |
{fctrk3#2} |
|
(Clause 3.1.8.3) |
||||||
|
Factor k4 (fctrk4#5) |
= |
{fctrk4#5} |
|
(Clause 3.1.8.3) |
||||||
|
Factor k5 (fctrk5#2) |
= |
{fctrk5#2} |
|
(Clause 3.1.8.3) |
||||||
|
|||||||||||
|
Design creep factor (Øcc = Coefcr*k2*k3*k4*k5) |
= |
{Occ} |
|
(Clause 3.1.8.3) {DEC 0} |
||||||
|
|||||||||||
|
Moment due to girder self-weight (Msw) |
= |
{Msw} |
|
kN.m |
||||||
|
Young's Modulus of girder at 28 days (Eg) |
= |
{Eg} |
|
MPa {DEC 1} |
||||||
|
|
|
|
|
|||||||
|
Creep stress at CG of strand group: |
|
|
|
|||||||
|
fcscgs = -Pt*1000(1/Ag + e^2/Ig) + Msw*10^6*e/Ig |
= |
{fcscgs} |
|
MPa |
||||||
|
|
|
|
|
|||||||
|
Creep strain at CG of strand group (Eqn 3.4.3.3): |
|
|
{DEC 0} |
|||||||
|
ucc1 = (10^6*0.8*fcscgs*Øcc)/Eg |
= |
{ucc1} |
|
|||||||
|
|
|
|
|
|||||||
|
Creep Loss due to Deck & Superimposed Loads |
|
|||||||||
|
|
|
|
|
|||||||
|
Deal load moment of concrete slab (Mslab) |
= |
{Mslab} |
|
kN.m |
||||||
|
Moment due to superimposed loads (Msdl) |
= |
{Msdl} |
|
kN.m {EXP 4} |
||||||
|
|||||||||||
|
Moment of inertia of girder (Ig) |
= |
{Ig} |
|
mm^4 |
||||||
|
Moment of inertia of composite sectn (Ic) |
= |
{Ic} |
|
mm^4 {DEC 0} |
||||||
|
Height to centroid of girder (Yb) |
= |
{Yb} |
|
mm |
||||||
|
Height to centroid of composite sectn (Yc) |
= |
{Yc} |
|
mm |
||||||
|
Height to CG of strand group (Ycgs) |
= |
{Ycgs} |
|
mm {DEC 2} |
||||||
|
|
|
|
|
|||||||
|
Stress at CG due to the concrete deck: |
|
|
|
|||||||
|
Fdeck = Mslab*10^6*(Yb - Ycgs)/Ig |
= |
{Fdeck} |
|
MPa |
||||||
|
Stress at CG due to the superimposed DL: |
||||||||||
|
Fsdl = Msdl*10^6*(Yc - Ycgs)/Ic |
= |
{Fsdl} |
|
MPa {DEC 0} |
||||||
|
|||||||||||
|
Time at which all girder creep has finished |
= |
{Tfinal} |
|
Days |
||||||
|
Time at which the girder is first loaded |
= |
{Tloadg} |
|
Days |
||||||
|
|
|
|
|
|||||||
|
28 day slab concrete strength (f'cs) |
= |
{f`cs} |
|
MPa {DEC 2} |
||||||
|
|
|
|
|
|||||||
|
Basic creep coefficient of slab (Coefcrs) |
= |
{Coefcrs} |
|
[Table 3.1.8.2] {DEC 4} |
||||||
|
Factor a2 (fctra2#3) |
= |
{fctra2#2} |
|
[Figure 3.1.8.3] |
||||||
|
Factor k2 (fctrk2#3) |
= |
{fctrk2#2} |
|
(Clause 3.1.8.3) |
||||||
|
Factor k3 (fctrk3#3) |
= |
{fctrk3#2} |
|
(Clause 3.1.8.3) {DEC 2} |
||||||
|
Factor k4 (fctrk4#6) |
= |
{fctrk4#5} |
|
(Clause 3.1.8.3) |
||||||
|
Factor k5 (fctrk5#3) |
= |
{fctrk5#2} |
|
(Clause 3.1.8.3) |
||||||
|
|||||||||||
|
Design creep factor (Øcc2 = Coefcrs*k2*k3*k4*k5) |
= |
{Occ2} |
|
[Clause 3.1.8.3] {DEC 0} |
||||||
|
|
|
|
|
|||||||
|
Creep strain at CG of strand group (Eqn 3.4.3.3): |
||||||||||
|
ucc2 = Øcc2*0.8*10^6*(Fdeck+Fsdl)/Eg |
= |
{ucc2} |
|
|||||||
|
|
|
|
|
|||||||
|
Total creep strain: |
||||||||||
|
ucc = ucc1 + ucc2 |
= |
{ucc} |
|
|||||||
|
|
|
|
|
|||||||
|
Summary of Creep Losses |
|
|
{DEC 1} |
|||||||
|
|
|
|
|
|||||||
|
Loss in PS due to creep (Pcreep = ucc*Ep*Ap/10^9) = |
{Pcreep} |
|
kN |
|||||||
|
Loss as a proportion of Pj (Lcr = - Pcreep*100/Pj) = |
{Lcr} |
|
% {DEC 0} |
|||||||
|
|
|
|
|
|
||||||
|
Summary of Prestress Losses |
|
|
|
|
||||||
|
|
|
|
|
|
||||||
|
Total remaining prestress force (P = Pt + Pshr + Pcreep) = |
{P} |
|
kN {DEC 1} |
|||||||
|
Total loss of PS as a proportion of Pj (Ltt = P*100/Pj) = |
{Ltt} |
|
% |
|||||||
|
|
|
|
|
|
||||||
|
Force (kN) |
%Pj |
JACKING FORCE (Pj) |
{Pj} |
100 |
Loss in PS due to relaxation |
{Prl} |
{Lsr} |
Loss in PS due to elastic deformation |
{Pelastic} |
{Ledl} |
|
|
|
TRANSFER FORCE (Pt) |
{Pt} |
{Ltr} |
Loss in PS due to shrinkage |
{Pshr} |
{Lshr} |
Loss in PS due to creep |
{Pcreep} |
{Lcr} |
|
|
|
FINAL PS FORCE (P) |
{P} |
{Ltt} {DEC 0} |