ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, microstrain, kN, kN.m, MPa

Design Code:   {CODE} {DEC 0}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}

  Distance (x) of section from the first node = {x}  mm        
         
  Strand segment number:  {SectSSeg}      
  Passive R/F segment number:  {SectPSeg}      

PRESTRESS LOSSES

  Initial jacking force (Pj)

=

{Pj}

    kN {DEC 3}
  Jacking force factor (Jf)

=

{Jf}

   
           
  Loss due to Steam Relaxation        
           
  The steam relaxation factor (k5) is the larger of 0.0 or:
       The maximum of: k5a = 1 + (Jf-0.7)*0.5/0.1

=

{k5a}

  ({CODE} (Fig 6.3.4))
       and: k5b = (Jf-0.4)/0.3

=

{k5b}

   
           
  Steam relaxation factor (k5)

=

{k5}

   
  Loss due to relaxation (Lsrl = 0.1*k5/1.5)

=

{Lsrl}

  {DEC 1}
           
  Loss in PS due to relaxation (Prl = - Lsrl*Pj)

=

{Prl}

  kN
  Loss as a proportion of Pj (Lsr = - 100*Lsrl)

=

{Lsr}

 
  PS force remaining (Pjr = Pj + Prl)

=

{Pjr}

  kN
           
  Elastic Deformation Loss        
           
  Area of a single strand (Aps)

=

{Aps}

  mm^2
  Area of bonded PS steel (Ap = Nbbars*Aps)

=

{Ap}

  mm^2
           
  Mean Young's Modulus of girder concrete (Egmt)

=

{Egmt}

  MPa 
  Young's Modulus of stressing steel (Ep)  

=

{Ep}

  MPa
  Area of girder (Ag)

=

{Ag}

  mm^2  {EXP 4}
  Moment of inertia of girder (Ig)

=

  {Ig}

  mm^4 {DEC 01}
  Dist between CG girder and CG of strands (e)

=

{e}

  mm 
  Moment due to girder selfweight (Msw)

=

{Msw}

  kN.m 
           
  Stress at CG of strand group:       {DEC 2}
           
  fcgs = - Pjr*1000*(1/Ag + e^2/Ig) + Msw*10^6*e/Ig  

=

{fcgs}

  MPa {DEC 1}
           
  Elastic deformation loss:
  Pelastic = fcgs*Ep*Ap/(Egmt*1000)

=

{Pelastic}

  kN.m 
  Loss as a proportion of Pj (Ledl = - Pelastic*100/Pj)

=

{Ledl}

  %
           
  PS force at transfer (Pt = Pjr + Pelastic)

=

{Pt}

  kN
  PS at transfer as a proportn of Pj (Ltr = Pt*100/Pj)

=

{Ltr}

  %
           
  Shrinkage Loss       {DEC 1}
           
  Shrinkage strain (us) [Figure 6.1.7]

=

{us}

  microstrain {DEC 3}
  Modular ratio (n = Es/Eg)

=

{n}

  {DEC 0}
           
  Area of concrete slab (As)

=

{As}

  mm^2
  Total area of longitudinal reinforcement (Arl)

=

{Arl}

  mm^2
  Effective area of composite girder (Ac = n*As + Ag)

=

  {Ac}

  mm^2
          {DEC 1}
  Loss in PS due to shrinkage:
  Pshr = - us*Ep*Ap*10^-9/(1 + 15*Arl/Ac)

=

{Pshr}

  kN ({CODE} Clause 6.4.3.2)
  Loss as a proportion of Pj: (Lshr = - Pshr*100/Pj)

=

{Lshr}

  %
  PS force remaining after shrinkage: (Prs=Pt+Pshr)

=

{Prs}

  kN
           
  Creep Loss due to Prestress & Self-Weight        
           
  Moment due to girder self-weight (Msw)

=

{Msw}

  kN.m {DEC 0}
  Actual area of composite girder (At)

=

{At}

  mm^2
  Exposed girder perimeter (Gp)

=

{Gp}

  mm
  Void perimeter (Vp)

=

{Vp}

  mm
  Young's Modulus of girder at 28 days (Eg)

=

{Eg}

  MPa {DEC 1}
  Mean girder concrete strength at transfer (f'cmt)

=

{f'cmt}

  MPa
  28 day girder concrete strength (f'cg)

=

{f'cg}

  MPa {DEC 2}
           
  Theoretical thickness (th = 2*At/(Gp + 0.5*Vp))

=

{th}

  ({CODE} Clause 6.1.7)
  Ratio of concrete strengths (Fratio = f'cmt/f'cg)

=

{Fratio}

   
           
  Basic creep factor (Øccb)

=

{Occb}

  ({CODE} Table 6.1.8a)
  Creep coefficient (k2)

=

{k2}

  ({CODE} Figure 6.1.8a)
  Creep coefficient (k3)

=

{k3}

  ({CODE} Figure 6.1.8b)
  Design creep factor (Øcc = Øccb*k2*k3)

=

{Occ}

  ({CODE} Clause 6.1.8.2) {DEC 2}
           
  Creep stress at CG of strand group:        
  fcscgs = -Pt*1000(1/Ag + e^2/Ig) + Msw*10^6*e/Ig  

=

{fcscgs}

  MPa {DEC 1}
           
  Creep strain at CG of strand group:        
  ucc1 = (10^6*fcscgs* Øcc)/Eg

=

{ucc1}

  microstrain
           
  Creep Loss due to Deck & Superimposed Loads   {DEC 1}
           
  Deal load moment of concrete slab (Mslab)

=

{Mslab}

  kN.m
  Moment due to superimposed loads (Msdl)

=

{Msdl}

  kN.m {EXP 4}
  Moment of inertia of girder (Ig)

=

  {Ig}

  mm^4
  Moment of inertia of composite sectn (Ic)

=

{Ic}

  mm^4 {DEC 1}
  Height to centroid of girder (Yb)

=

{Yb}

  mm
  Height to centroid of composite sectn (Yc)

=

{Yc}

  mm
  Height to CG of strand group (Ycgs)

=

{Ycgs}

  mm {DEC 2}
           
  Stress at CG due to concrete deck:        
  Fdeck = Mslab*10^6*(Yb - Ycgs)/Ig

=

{Fdeck}

  MPa
  Stress at CG due to superimposed DL:
  Fsdl = Msdl*10^6*(Yc - Ycgs)/Ic

=

{Fsdl}

  MPa {DEC 2}
           
  Basic creep factor (Øccb)

=

{Occb}

  ({CODE} Table 6.1.8A)
  Creep coefficient (k2s)

=

{k2s}

  ({CODE} Figure 6.1.8A)
  Creep coefficient (k3s)

=

{k3s}

  ({CODE} Figure 6.1.8B)
  Design creep factor (Øcc2 = Øccb*k2s*k3s)

=

{Occ2}

  ({CODE} Clause 6.1.8.2) {DEC 1}
           
  Creep strain at CG of strand group:
  ucc2 = Øcc2*10^6*(Fdeck+Fsdl)/Eg

=

{ucc2}

  microstrain
           
  Total creep strain:
  ucc = ucc1 + ucc2

=

{ucc}

  microstrain
           
  Summary of Creep Losses       {DEC 1}
           
  Loss in PS due to creep (Pcreep = ucc*Ep*Ap/10^9)     =

{Pcreep}

  kN
  Loss as a proportion of Pj (Lcr = - Pcreep*100/Pj)         =

{Lcr}

  %
           
  Summary of Prestress Losses        
           
  Total remaining prestress force (P = Pt + Pshr + Pcreep)  =

{P}

  kN
  Total loss of PS as a proportion of Pj (Ltt = P*100/Pj)     =

{Ltt}

  %
           
 

Force (kN)

    %Pj    

JACKING FORCE (Pj)

{Pj}

100

Loss in PS due to relaxation

{Prl}

{Lsr}

Loss in PS due to elastic deformation

{Pelastic}

{Ledl}

     
TRANSFER FORCE (Pt)

{Pt}

{Ltr}

Loss in PS due to shrinkage

{Pshr}

{Lshr}

Loss in PS due to creep

{Pcreep}

{Lcr}

     
FINAL PS FORCE (P)

{P}

{Ltt} {DEC 0}