ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Heading:   {PROJECT}
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Comments: {COMMENT1}

Units:    mm, kN, MPa, kN.m, microstrain

Design Code:   {CODE}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}  ({SecName$})

 

Distance (x) of section from the first node = {x}  mm

 

   

 


UNFACTORED DESIGN MOMENTS  (kN.m)

Self weight

   (Msw) =  

 {Msw}  

Insitu concrete slab  

(Mslab) =  

 {Mslab}  

SDL (bitumen, parapet etc)

(Msdl) =   

 {Msdl}  

Design live load

 (Mll) =  

 {Mll}  

Secondary prestress

 (Msecpres) =  

{Msecpres}  

Differential shrinkage

(Mdiffshr) =  

{Mdiffshr}  

Residual creep

(Mrescree) =  

{Mrescree}  

Differential temp (hot top)

(Mdiffteh) =  

{Mdiffteh}  

Differential temp (cold top)   

(Mdifftec) =  

{Mdifftec}   

Differential settlement

(Mdiffset) =  

{Mdiffset}  

User transient loading

(Musertra) =  

{Musertra}  

 

DIFFERENTIAL SHRINKAGE   {DEC 1}

Time between the girder concrete setting and the

girder being made composite

=

{Tsetgc}

Days

 

Time between the girder concrete drying and the

girder being made composite

=

{Tdrygc}

Days

 

Aggregate source location:

    {AgSrce$}

Bridge environment:

    {Environ$}

 

Girder shrinkage strains:

 

28 day girder strength  (fcg)

=

{f`cg}

 

MPa

Hypothetical thickness  (th)

=

{th}

 

mm  {DEC 3} 

 

Factor a1  (fctra1#1)

=

{fctra1#1}

(Figure 3.1.7.2) {DEC 0} 

Final autogenous shrinkage strain  (Ecsc)

=

{E`csc}

Basic drying shrinkage strain  (Ecsd.b)

=

{Ecsd.b}

{DEC 3} 

Factor k4  (fctrk4#1)

=

{fctrk4#1}

(Clause 3.1.7.2(4))

 

Strain at the time the girder is made composite:

{DEC 0} 

  Theoretical thickness of girder  (th1)

=

{th1}

 

mm

   Autogenous shrinkage strain  (Ecse1)

=

{Ecse1}

{DEC 3} 

   Factor a1  (fctra1#2)

=

{fctra1#2}

(Figure 3.1.7.2)

   Factor k1  (fctrk1#1)

=

{fctrk1#1}

(Figure 3.1.7.2) {DEC 0} 

   Drying shrinkage strain  (Ecsd1)

=

{Ecsd1}

   Total shrinkage strain  (Ecst1 = Ecsd1 + Ecsc1)

=

{Ecst1}

 

Final strain:

   Autogenous shrinkage strain  (Ecsc)

=

{E`csc}

{DEC 3} 

   Factor k1  (fctrk1#2)

=

{fctrk1#2}

(Figure 3.1.7.2) {DEC 0} 

   Drying shrinkage strain  (Ecsd2)

=

{Ecsd2}

   Total shrinkage strain  (Ecst2 = Ecsc + Ecsd2)

=

{Ecst2}

 

Residual girder shrinkage strain  (u1 = Ecst2 Ecst1)

=

{u1}

 

Slab shrinkage strains:

 

28 day slab strength  (fcs)

=

{f`cs}

 

MPa

Hypothetical thickness  (th)

=

{th}

 

mm  {DEC 3} 

 

Factor a1  (fctra1#3)

=

{fctra1#3}

(Figure 3.1.7.2) {DEC 0} 

Basic slab drying shrinkage strain  (Ecsds.b)

=

{Ecsds.b}

{DEC 3}

Factor k4   (fctrk4#2)

=

{fctrk4#2}

(Clause 3.1.7.2(4))

 

Final strain:

{DEC 0} 

   Slab autogenous shrinkage strain  (Ecscs)

=

{E`cscs}

{DEC 3} 

   Factor k1    (fctrk1#3)

=

{fctrk1#3}

(Figure 3.1.7.2) {DEC 0} 

   Slab drying shrinkage strain  (Ecsd3)

=

{Ecsd3}

   Total shrinkage strain  (Ecst3 = Ecsd3 + Ecscs)

=

{Ecst3}

 

 

Ultimate shrinkage strain in insitu slab (u2)

=

{u2}

 

microstrain

 

Differential shrinkage strain (u = u2 - u1)

=

{u}

 

microstrain

 

 

 

 

 

 

Calculate residual creep factor:

 

28 day girder strength  (fcg)

=

{f`cg}

 

MPa

 

Youngs Modulus of girder (Eg)

=

{Eg}

 

MPa

 

Youngs Modulus of insitu slab (Es)

=

{Es}

 

MPa {DEC 2}

 

Modular ratio (n = Es/Eg)

=

{n}

 

 

 

 

 

 

 

{DEC 0} 

 

Area of insitu slab concrete (As = Ws*Ts)

=

{As}

 

mm^2

 

Height to centroid of slab from bottom of girder (Ys)  

=

{Ys}

 

mm

 

Height to centroid of composite girder (Yc)  

=

{Yc}

 

mm

 

Differential eccentricity (ec = Ys-Yc)

=

{ec}

 

mm

 

Time between the girder starting to dry & all creep stops:

=

{Tdryg}

Days

Time at which the girder is first loaded

=

{Tloadg}

Days

 

Hypothetical thickness    (th)

=

{th}

 

mm  {DEC 2} 

Basic creep coefficient  (Coefcr) 

=

{Coefcr}

(Table 3.1.8.2) 

 

Factor a2  (fctra2#1)

=

{fctra2#1}

(Figure 3.1.8.3) 

Factor k2  (fctrk2#1)

=

{fctrk2#1}

(Figure 3.1.8.3) 

Factor k3  (fctrk3#1)

=

{fctrk3#1}

(Clause 3.1.8.3) 

Factor k4  (fctrk4#3) 

=

{fctrk4#3}

(Clause 3.1.8.3) 

Factor k5  (fctrk5#1)

=

{fctrk5#1}

(Clause 3.1.8.3) 

 

 

Residual creep factor for girder (Rcf = k2*k3*k4*k5*Coefcr)

=

{Rcf}

 

{DEC 0}

 

Calculate shrinkage force and moment:

 

 

 

 

 

 

 

Shrinkage force (Fshr) given by:

 

   Fshr = (u*Es*As/10^9)*(1 - 2.71828^-Rcf)/Rcf   

=

{Fshr}

 

kN

 

Shrinkage moment   (Mshr = Fshr * ec / 1000)

=

{Mshr}

 

kN.m

 

 

 

 

 

 

 

Shrinkage stresses:

 

 

 

 

 

 

 

 

 

 

SumNA = n*As + 1.0*Ag

=

 {SumNA}

 

mm2 {DEC 2}

 

Fsus = Fshr*1000*(1/As - n/SumNA)

=

{Fsus}

 

MPa

 

Fsug = - Fshr*1000 / SumNA

=

{Fsug}

 

MPa 

 

 

 

 

 

 

 

Stress at top of insitu slab (fts = Fsus - Mshr*10^6/Zst)

=

{fts}

   

MPa

 

Stress at bottom of insitu slab (fbs = Fsus - Mshr*10^6/Zsb)

=

{fbs}

 

MPa

 

Stress at top of precast girder (ftg = Fsug - Mshr*10^6/Zgt)  

=

{ftg}

 

MPa

 

Stress at bot of precast girder (fbg = Fsug + Mshr*10^6/Zgb)  

=

{fbg}

 

MPa {DEC 0}

 

 

 

 

 

 

PRESTRESS FORCES - PRELIMINARY ESTIMATE

{IncDBar$}

 Row

Ybar (mm)

 Total no. of strands 

No. of debonded strands

No. of strands included

Ybar*No. strands included

{%i}

 {Ybarri} 

{Nbarti}

{Nbardi}

{Nbarbi}

{YbxNbi}    

 

 

{Nbars}

{Ndbars}

{Nbbars}

{Ynbars}    

 

 

 

{DEC 1}

Strand diameter (Ds)  

=

{Ds}

mm {DEC 0}

 

Total number of strands in the section

=

{Nbars}

   

 

 

Total number of debonded strands in the section

=

{Ndbars}

 

 

 

Total number of strands included in the analysis   

=

{Nbbars}

 

(Nbbars)

 

Sum of Ybar x number of strands included in analysis

=

 {Ynbars}

 

(Ynbars)

 

 

 

 

 

 

 

Distance from bottom of girder to girder centroid (Yb)  

=

{Yb}

 

mm

 

Distance from bottom of girder to CG strands (Ycgs)

=

{Ycgs}

 

mm  (Ynbars/Nbbars)

 

Eccentricity of CG strands from CG girder section (e)

=

{e}

 

mm  (Yb - Ycgs)

 

 

 

 

 

 

 

Preliminary Estimate of Jacking Force:

 

 

 

{DEC 2}

 

 

 

 

 

 

 

Jacking force factor (Jf)

=

{Jf}

 

{DEC 0}

 

Ultimate strand breaking force (Pult)

=

{Pult}

 

kN 

 

Initial jacking force (Pj = Nbbars*Pult*Jf)

=

 {Pj}

 

kN