ACES PSC Design Module V{VERSION}:   Run date:  {DATE}
-------------------------------------------------------------------------------------------------
Job Name: {JOBNAME}
Designer:  {DESIGNER}

Units:    mm, kN, MPa, kN.m, microstrain

Design Code:   {CODE}
-------------------------------------------------------------------------------------------------

SECTION:   {Sectnum}  ({SecName\$})

 Distance (x) of section from the first node = {x}  mm

UNFACTORED DESIGN MOMENTS  (kN.m)

 Self weight (Msw) = {Msw} Insitu concrete slab (Mslab) = {Mslab} SDL (bitumen, parapet etc) (Msdl) = {Msdl} Design live load (Mll) = {Mll} Secondary prestress (Msecpres) = {Msecpres} Differential shrinkage (Mdiffshr) = {Mdiffshr} Residual creep (Mrescree) = {Mrescree} Differential temp (hot top) (Mdiffteh) = {Mdiffteh} Differential temp (cold top) (Mdifftec) = {Mdifftec} Differential settlement (Mdiffset) = {Mdiffset} User transient loading (Musertra) = {Musertra}

DIFFERENTIAL SHRINKAGE   {DEC 1}

 Time between the girder concrete setting and the girder being made composite = {Tsetgc} Days Time between the girder concrete drying and the girder being made composite = {Tdrygc} Days Aggregate source location: {AgSrce\$} Bridge environment: {Environ\$} Girder shrinkage strains: 28 day girder strength  (f’cg) = {f`cg} MPa Hypothetical thickness  (th) = {th} mm  {DEC 3} Factor ‘a1’  (fctra1#1) = {fctra1#1} (Figure 3.1.7.2) {DEC 0} Final autogenous shrinkage strain  (E’csc) = {E`csc} Basic drying shrinkage strain  (Ecsd.b) = {Ecsd.b} {DEC 3} Factor ‘k4’  (fctrk4#1) = {fctrk4#1} (Clause 3.1.7.2(4)) Strain at the time the girder is made composite: {DEC 0} Theoretical thickness of girder  (th1) = {th1} mm Autogenous shrinkage strain  (Ecse1) = {Ecse1} {DEC 3} Factor ‘a1’  (fctra1#2) = {fctra1#2} (Figure 3.1.7.2) Factor ‘k1’  (fctrk1#1) = {fctrk1#1} (Figure 3.1.7.2) {DEC 0} Drying shrinkage strain  (Ecsd1) = {Ecsd1} Total shrinkage strain  (Ecst1 = Ecsd1 + Ecsc1) = {Ecst1} Final strain: Autogenous shrinkage strain  (E’csc) = {E`csc} {DEC 3} Factor ‘k1’  (fctrk1#2) = {fctrk1#2} (Figure 3.1.7.2) {DEC 0} Drying shrinkage strain  (Ecsd2) = {Ecsd2} Total shrinkage strain  (Ecst2 = E’csc + Ecsd2) = {Ecst2} Residual girder shrinkage strain  (u1 = Ecst2 – Ecst1) = {u1} Slab shrinkage strains: 28 day slab strength  (f’cs) = {f`cs} MPa Hypothetical thickness  (th) = {th} mm  {DEC 3} Factor ‘a1’  (fctra1#3) = {fctra1#3} (Figure 3.1.7.2) {DEC 0} Basic slab drying shrinkage strain  (Ecsds.b) = {Ecsds.b} {DEC 3} Factor ‘k4’   (fctrk4#2) = {fctrk4#2} (Clause 3.1.7.2(4)) Final strain: {DEC 0} Slab autogenous shrinkage strain  (E’cscs) = {E`cscs} {DEC 3} Factor ‘k1’    (fctrk1#3) = {fctrk1#3} (Figure 3.1.7.2) {DEC 0} Slab drying shrinkage strain  (Ecsd3) = {Ecsd3} Total shrinkage strain  (Ecst3 = Ecsd3 + E’cscs) = {Ecst3} Ultimate shrinkage strain in insitu slab (u2) = {u2} microstrain Differential shrinkage strain (u = u2 - u1) = {u} microstrain Calculate residual creep factor: 28 day girder strength  (f’cg) = {f`cg} MPa Youngs Modulus of girder (Eg) = {Eg} MPa Youngs Modulus of insitu slab (Es) = {Es} MPa {DEC 2} Modular ratio (n = Es/Eg) = {n} {DEC 0} Area of insitu slab concrete (As = Ws*Ts) = {As} mm^2 Height to centroid of slab from bottom of girder (Ys) = {Ys} mm Height to centroid of composite girder (Yc) = {Yc} mm Differential eccentricity (ec = Ys-Yc) = {ec} mm Time between the girder starting to dry & all creep stops: = {Tdryg} Days Time at which the girder is first loaded = {Tloadg} Days Hypothetical thickness    (th) = {th} mm  {DEC 2} Basic creep coefficient  (Coefcr) = {Coefcr} (Table 3.1.8.2) Factor ‘a2’  (fctra2#1) = {fctra2#1} (Figure 3.1.8.3) Factor ‘k2’  (fctrk2#1) = {fctrk2#1} (Figure 3.1.8.3) Factor ‘k3’  (fctrk3#1) = {fctrk3#1} (Clause 3.1.8.3) Factor ‘k4’  (fctrk4#3) = {fctrk4#3} (Clause 3.1.8.3) Factor ‘k5’  (fctrk5#1) = {fctrk5#1} (Clause 3.1.8.3) Residual creep factor for girder (Rcf = k2*k3*k4*k5*Coefcr) = {Rcf} {DEC 0} Calculate shrinkage force and moment: Shrinkage force (Fshr) given by: Fshr = (u*Es*As/10^9)*(1 - 2.71828^-Rcf)/Rcf = {Fshr} kN Shrinkage moment   (Mshr = Fshr * ec / 1000) = {Mshr} kN.m Shrinkage stresses: SumNA = n*As + 1.0*Ag = {SumNA} mm2 {DEC 2} Fsus = Fshr*1000*(1/As - n/SumNA) = {Fsus} MPa Fsug = - Fshr*1000 / SumNA = {Fsug} MPa Stress at top of insitu slab (fts = Fsus - Mshr*10^6/Zst) = {fts} MPa Stress at bottom of insitu slab (fbs = Fsus - Mshr*10^6/Zsb) = {fbs} MPa Stress at top of precast girder (ftg = Fsug - Mshr*10^6/Zgt) = {ftg} MPa Stress at bot of precast girder (fbg = Fsug + Mshr*10^6/Zgb) = {fbg} MPa {DEC 0}

PRESTRESS FORCES - PRELIMINARY ESTIMATE

{IncDBar\$}

 Row Ybar (mm) Total no. of strands No. of debonded strands No. of strands included Ybar*No. strands included {%i} {Ybarri} {Nbarti} {Nbardi} {Nbarbi} {YbxNbi} {Nbars} {Ndbars} {Nbbars} {Ynbars}

 {DEC 1} Strand diameter (Ds) = {Ds} mm {DEC 0} Total number of strands in the section = {Nbars} Total number of debonded strands in the section = {Ndbars} Total number of strands included in the analysis = {Nbbars} (Nbbars) Sum of Ybar x number of strands included in analysis = {Ynbars} (Ynbars) Distance from bottom of girder to girder centroid (Yb) = {Yb} mm Distance from bottom of girder to CG strands (Ycgs) = {Ycgs} mm  (Ynbars/Nbbars) Eccentricity of CG strands from CG girder section (e) = {e} mm  (Yb - Ycgs) Preliminary Estimate of Jacking Force: {DEC 2} Jacking force factor (Jf) = {Jf} {DEC 0} Ultimate strand breaking force (Pult) = {Pult} kN Initial jacking force (Pj = Nbbars*Pult*Jf) = {Pj} kN