ACES PSC Design Module V{VERSION}: Run date: {DATE}
-------------------------------------------------------------------------------------------------
Heading: {PROJECT}
Job Name: {JOBNAME}
Designer: {DESIGNER}
Comments: {COMMENT1}
Units: mm, kN, MPa, kN.m, microstrain
Design Code: {CODE}
-------------------------------------------------------------------------------------------------
SECTION: {Sectnum} ({SecName$})
|
Distance (x) of section from the first node = {x} mm |
|
|
|
UNFACTORED DESIGN MOMENTS (kN.m)
Self weight |
(Msw) = |
{Msw} |
Insitu concrete slab |
(Mslab) = |
{Mslab} |
SDL (bitumen, parapet etc) |
(Msdl) = |
{Msdl} |
Design live load |
(Mll) = |
{Mll} |
Secondary prestress |
(Msecpres) = |
{Msecpres} |
Differential shrinkage |
(Mdiffshr) = |
{Mdiffshr} |
Residual creep |
(Mrescree) = |
{Mrescree} |
Differential temp (hot top) |
(Mdiffteh) = |
{Mdiffteh} |
Differential temp (cold top) |
(Mdifftec) = |
{Mdifftec} |
Differential settlement |
(Mdiffset) = |
{Mdiffset} |
User transient loading |
(Musertra) = |
{Musertra} |
DIFFERENTIAL SHRINKAGE {DEC 1}
Time between the girder concrete setting and the girder being made composite |
= |
{Tsetgc} |
Days |
||
|
|||||
Time between the girder concrete drying and the girder being made composite |
= |
{Tdrygc} |
Days |
||
|
|||||
Aggregate source location: |
|||||
{AgSrce$} |
|||||
Bridge environment: |
|||||
{Environ$} |
|||||
|
|||||
Girder shrinkage strains: |
|||||
|
|||||
28 day girder strength (f’cg) |
= |
{f`cg} |
|
MPa |
|
Hypothetical thickness (th) |
= |
{th} |
|
mm {DEC 3} |
|
|
|||||
Factor ‘a1’ (fctra1#1) |
= |
{fctra1#1} |
(Figure 3.1.7.2) {DEC 0} |
||
Final autogenous shrinkage strain (E’csc) |
= |
{E`csc} |
|||
Basic drying shrinkage strain (Ecsd.b) |
= |
{Ecsd.b} |
{DEC 3} |
||
Factor ‘k4’ (fctrk4#1) |
= |
{fctrk4#1} |
(Clause 3.1.7.2(4)) |
||
|
|||||
Strain at the time the girder is made composite: |
{DEC 0} |
||||
Theoretical thickness of girder (th1) |
= |
{th1} |
|
mm |
|
Autogenous shrinkage strain (Ecse1) |
= |
{Ecse1} |
{DEC 3} |
||
Factor ‘a1’ (fctra1#2) |
= |
{fctra1#2} |
(Figure 3.1.7.2) |
||
Factor ‘k1’ (fctrk1#1) |
= |
{fctrk1#1} |
(Figure 3.1.7.2) {DEC 0} |
||
Drying shrinkage strain (Ecsd1) |
= |
{Ecsd1} |
|||
Total shrinkage strain (Ecst1 = Ecsd1 + Ecsc1) |
= |
{Ecst1} |
|||
|
|||||
Final strain: |
|||||
Autogenous shrinkage strain (E’csc) |
= |
{E`csc} |
{DEC 3} |
||
Factor ‘k1’ (fctrk1#2) |
= |
{fctrk1#2} |
(Figure 3.1.7.2) {DEC 0} |
||
Drying shrinkage strain (Ecsd2) |
= |
{Ecsd2} |
|||
Total shrinkage strain (Ecst2 = E’csc + Ecsd2) |
= |
{Ecst2} |
|||
|
|||||
Residual girder shrinkage strain (u1 = Ecst2 – Ecst1) |
= |
{u1} |
|||
|
|||||
Slab shrinkage strains: |
|||||
|
|||||
28 day slab strength (f’cs) |
= |
{f`cs} |
|
MPa |
|
Hypothetical thickness (th) |
= |
{th} |
|
mm {DEC 3} |
|
|
|||||
Factor ‘a1’ (fctra1#3) |
= |
{fctra1#3} |
(Figure 3.1.7.2) {DEC 0} |
||
Basic slab drying shrinkage strain (Ecsds.b) |
= |
{Ecsds.b} |
{DEC 3} |
||
Factor ‘k4’ (fctrk4#2) |
= |
{fctrk4#2} |
(Clause 3.1.7.2(4)) |
||
|
|||||
Final strain: |
{DEC 0} |
||||
Slab autogenous shrinkage strain (E’cscs) |
= |
{E`cscs} |
{DEC 3} |
||
Factor ‘k1’ (fctrk1#3) |
= |
{fctrk1#3} |
(Figure 3.1.7.2) {DEC 0} |
||
Slab drying shrinkage strain (Ecsd3) |
= |
{Ecsd3} |
|||
Total shrinkage strain (Ecst3 = Ecsd3 + E’cscs) |
= |
{Ecst3} |
|||
|
|||||
|
Ultimate shrinkage strain in insitu slab (u2) |
= |
{u2} |
|
microstrain |
|
Differential shrinkage strain (u = u2 - u1) |
= |
{u} |
|
microstrain |
|
|
|
|
|
|
Calculate residual creep factor: |
|||||
|
|||||
28 day girder strength (f’cg) |
= |
{f`cg} |
|
MPa |
|
|
Youngs Modulus of girder (Eg) |
= |
{Eg} |
|
MPa |
|
Youngs Modulus of insitu slab (Es) |
= |
{Es} |
|
MPa {DEC 2} |
|
Modular ratio (n = Es/Eg) |
= |
{n} |
|
|
|
|
|
|
|
{DEC 0} |
|
Area of insitu slab concrete (As = Ws*Ts) |
= |
{As} |
|
mm^2 |
|
Height to centroid of slab from bottom of girder (Ys) |
= |
{Ys} |
|
mm |
|
Height to centroid of composite girder (Yc) |
= |
{Yc} |
|
mm |
|
Differential eccentricity (ec = Ys-Yc) |
= |
{ec} |
|
mm |
|
|||||
Time between the girder starting to dry & all creep stops: |
= |
{Tdryg} |
Days |
||
Time at which the girder is first loaded |
= |
{Tloadg} |
Days |
||
|
|||||
Hypothetical thickness (th) |
= |
{th} |
|
mm {DEC 2} |
|
Basic creep coefficient (Coefcr) |
= |
{Coefcr} |
(Table 3.1.8.2) |
||
|
|||||
Factor ‘a2’ (fctra2#1) |
= |
{fctra2#1} |
(Figure 3.1.8.3) |
||
Factor ‘k2’ (fctrk2#1) |
= |
{fctrk2#1} |
(Figure 3.1.8.3) |
||
Factor ‘k3’ (fctrk3#1) |
= |
{fctrk3#1} |
(Clause 3.1.8.3) |
||
Factor ‘k4’ (fctrk4#3) |
= |
{fctrk4#3} |
(Clause 3.1.8.3) |
||
Factor ‘k5’ (fctrk5#1) |
= |
{fctrk5#1} |
(Clause 3.1.8.3) |
||
|
|||||
|
Residual creep factor for girder (Rcf = k2*k3*k4*k5*Coefcr) |
= |
{Rcf} |
|
{DEC 0} |
|
|||||
Calculate shrinkage force and moment: |
|||||
|
|
|
|
|
|
|
Shrinkage force (Fshr) given by: |
||||
|
Fshr = (u*Es*As/10^9)*(1 - 2.71828^-Rcf)/Rcf |
= |
{Fshr} |
|
kN |
|
Shrinkage moment (Mshr = Fshr * ec / 1000) |
= |
{Mshr} |
|
kN.m |
|
|
|
|
|
|
|
Shrinkage stresses: |
|
|
|
|
|
|
|
|
|
|
|
SumNA = n*As + 1.0*Ag |
= |
{SumNA} |
|
mm2 {DEC 2} |
|
Fsus = Fshr*1000*(1/As - n/SumNA) |
= |
{Fsus} |
|
MPa |
|
Fsug = - Fshr*1000 / SumNA |
= |
{Fsug} |
|
MPa |
|
|
|
|
|
|
|
Stress at top of insitu slab (fts = Fsus - Mshr*10^6/Zst) |
= |
{fts} |
|
MPa |
|
Stress at bottom of insitu slab (fbs = Fsus - Mshr*10^6/Zsb) |
= |
{fbs} |
|
MPa |
|
Stress at top of precast girder (ftg = Fsug - Mshr*10^6/Zgt) |
= |
{ftg} |
|
MPa |
|
Stress at bot of precast girder (fbg = Fsug + Mshr*10^6/Zgb) |
= |
{fbg} |
|
MPa {DEC 0} |
|
|
|
|
|
|
PRESTRESS FORCES - PRELIMINARY ESTIMATE
{IncDBar$}
Row |
Ybar (mm) |
Total no. of strands |
No. of debonded strands |
No. of strands included |
Ybar*No. strands included |
{%i} |
{Ybarri} |
{Nbarti} |
{Nbardi} |
{Nbarbi} |
{YbxNbi} |
|
|
{Nbars} |
{Ndbars} |
{Nbbars} |
{Ynbars} |
|
|||||
|
{DEC 1} |
||||
Strand diameter (Ds) |
= |
{Ds} |
mm {DEC 0} |
||
|
Total number of strands in the section |
= |
{Nbars} |
|
|
|
Total number of debonded strands in the section |
= |
{Ndbars} |
|
|
|
Total number of strands included in the analysis |
= |
{Nbbars} |
|
(Nbbars) |
|
Sum of Ybar x number of strands included in analysis |
= |
{Ynbars} |
|
(Ynbars) |
|
|
|
|
|
|
|
Distance from bottom of girder to girder centroid (Yb) |
= |
{Yb} |
|
mm |
|
Distance from bottom of girder to CG strands (Ycgs) |
= |
{Ycgs} |
|
mm (Ynbars/Nbbars) |
|
Eccentricity of CG strands from CG girder section (e) |
= |
{e} |
|
mm (Yb - Ycgs) |
|
|
|
|
|
|
|
Preliminary Estimate of Jacking Force: |
|
|
|
{DEC 2} |
|
|
|
|
|
|
|
Jacking force factor (Jf) |
= |
{Jf} |
|
{DEC 0} |
|
Ultimate strand breaking force (Pult) |
= |
{Pult} |
|
kN |
|
Initial jacking force (Pj = Nbbars*Pult*Jf) |
= |
{Pj} |
|
kN |